
Concept explainers
To rank:
The waves according to
a) their wave speed
b) the tension in the string along which they travel

Answer to Problem 1Q
Solution:
a) The waves can be ranked according to their wave speed as
b) The waves can be ranked according to their tension in the string along which they travel as
Explanation of Solution
1) Concept:
We can use the concept of the equation of transverse wave and speed of a travelling wave. The wave speed on a stretched string gives the relation between speed and tension in the string.
2) Formulae:
i)
ii)
iii)
3) Given:
The four waves along the strings with the same linear densities are
i)
ii)
iii)
iv)
4) Calculations:
a) Rank the waves according to their wave speed :
The equation of transverse wave is
The speed of the travelling wave is
The equation (i),
Compare this equation with equation (1), then the speed of the travelling wave is
The equation (ii) is
Compare this equation with equation (1), then the speed of the travelling wave is
The equation (iii) is
Compare this equation with equation (1), then the speed of the travelling wave is
The equation (iv) is
Compare this equation with equation (1), then the speed of the travelling wave is
Hence, the rank of the waves according to the wave speed is
b) Rank the waves according to tension:
The wave speed on a stretched string is
The speed on the stretched string is directly proportional to the tension in the string with the same linear density.
The speed on the stretched string for equation (i) is
The speed on the stretched string for equation (ii) is
The speed on the stretched string for equation (iii) is
The speed on the stretched string for equation (i) is
Hence, the rank of the waves according to their tension is
Conclusion:
We can find the wave speed by using its expression and rank their values. By using the expression of the speed on the stretched string, we can find thetension in each string and rank their values.
Want to see more full solutions like this?
Chapter 16 Solutions
Fundamentals of Physics Extended
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





