Concept explainers
If a transmission line in a cold climate collects ice, the increased diameter tends to cause vortex formation in a passing wind. The air pressure variations in the vortexes tend to cause the line to oscillate (gallop), especially if the frequency of the variations matches a resonant frequency of the line. In long lines, the resonant frequencies are so close that almost any wind speed can set up a resonant mode vigorous enough to pull down support towers or cause the line to short out with an adjacent line. If a transmission line has a length of 347 m, a linear density of 335 kg/m, and a tension of 65.2 MN, what are (a) the frequency of the fundamental mode and (b) the frequency difference between successive modes?
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Essential Biology (7th Edition)
Applications and Investigations in Earth Science (9th Edition)
Biology: Life on Earth (11th Edition)
Organic Chemistry
Microbiology: An Introduction
- The overall length of a piccolo is 32.0 cm. The resonating air column is open at both ends. (a) Find the frequency of the lowest note a piccolo can sound. (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 4 000 Hz. Find the distance between adjacent anti-nodes for this mode of vibration.arrow_forwardA copper wire has a radius of 200 µ m and a length of 5.0 m. The wire is placed under a tension of 3000 N and the wire stretches by a small amount. The wire is plucked and a pulse travels down the wire. What is the propagation speed of the pulse? (Assume the temperature does not change: (=8.96gcm3,Y=1.11011Nm) .)arrow_forwardReview. A tuning fork vibrating at 512 Hz falls from rest and accelerates at 9.80 m/s2. How far below the point of release is the tuning fork when waves of frequency 485 Hz reach the release point?arrow_forward
- A cable with a linear density of =0.2 kg/m is hung from telephone poles. The tension in the cable is 500.00 N. The distance between poles is 20 meters. The wind blows across the line, causing the cable resonate. A standing waves pattern is produced that has 4.5 wavelengths between the two poles. The air temperature is T=20C . What are the frequency and wavelength of the hum?arrow_forwardA string with a mass of 0.30 kg has a length of 4.00 m. If the tension in the string is 50.00 N, and a sinusoidal wave with an amplitude of 2.00 cm is induced on the string, what must the frequency be for an average power of 100.00 W?arrow_forwardA harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forward
- Police radars determine speed by measuring the shift of radio waves reflected by a moving vehicle. They do so by determining the beat frequency between the reflected wave and the 10.5 GHz emitted wave. Some units can be calibrated by using a tuning fork; holding a vibrating fork in front of the unit causes the display to register a speed corresponding to the vibration frequency. A tuning fork is labeled “55 mph.” What is the frequency of the tuning fork?arrow_forwardThe tension in a wire clamped at both ends is increased to 5.1 times its original magnitude without appreciably changing the wire's length between the clamps. What is the ratio of the new to the old wave speed for transverse waves traveling along this wire?arrow_forwardThe windpipe of one typical whooping crane is 5.5 feet long. What is the fundamental resonant frequency of the bird's trachea, modeled as a narrow pipe closed at one end? (Assume a temperature of 34°C.)arrow_forward
- A string fixed at both ends is driven by a vibrator with constant frequency f. When the tension in the string is F_T, six loops are observed. In terms of F_T, what should the tension in the string be in order to produce four loops?arrow_forwardan organ pipe whose length is held constant resonates at a frequency of 224 Hz when the air temperature is 15 degrees celcius. what will be its resonant frequency when the air temperature is 24 degrees celcius?arrow_forwardA 16-kg object hangs in equilibrium from a string of total length L = 5.0 m and linear mass density = 0.0028 kg/m. The string is wrapped around two light, frictionless pulleys that are separated by the distance d = 2.0 m (Fig. a). (a) Determine the tension in the string. N (b) (b) At what frequency must the string between the pulleys vibrate in order to form the standing-wave pattern shown in Figure (b)? Hzarrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill