Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 68P
To determine
To find:
a) The speed of the pulse.
b) The direction of the travel of the pulse.
c) The plot of h(x-5t) vs x for t = 2 s.
d) The plot of h(x-5t) vs t for x = 10 cm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particular person's eardrum is circular, with a diameter of 9.00 mm.
(a)How much sound energy (in J) is delivered to an eardrum in one second, at the threshold of human hearing? (The threshold of human hearing is taken to be 1.00 ✕ 10−12 W/m2.)
J
(b)How much sound energy (in J) is delivered to an eardrum in one second, at the pain threshold for human hearing? (The pain threshold occurs at 1.00 W/m2, one trillion times as intense as the lowest audible level.)
J
(c)Assume that musicians onstage are exposed to sound that is 10 decibels below the human pain threshold. Over the course of a two-hour concert, how much sound energy (in J) does each ear absorb onstage?
J
68 A single pulse, given by h(x - 5.01), is shown in Fig. 16-45
for t = 0. The scale of the vertical
axis is set by h, = 2. Here x is in
centimeters and t is in seconds.
What are the (a) speed and (b) di-
rection of travel of the pulse? (c)
Plot h(x – 5t) as a function of x for
1 = 2 s. (d) Plot h(xr – 5t) as a func-
tion of t for x = 10 cm.
%3D
%3!
t= 0
Figure 16-45 Problem 68.
The area of a typical eardrum is about 5.0 x 10-5 m2. Calculate the sound power (the energy per second) incident on an eardrum at (a) the threshold of hearing and (b) the threshold of pain.
Chapter 16 Solutions
Fundamentals of Physics Extended
Ch. 16 - Prob. 1QCh. 16 - Prob. 2QCh. 16 - Prob. 3QCh. 16 - Prob. 4QCh. 16 - Prob. 5QCh. 16 - The amplitudes and phase differences for four...Ch. 16 - Prob. 7QCh. 16 - a If a standing wave on a siring is given by y't =...Ch. 16 - Prob. 9QCh. 16 - If you set up the seventh harmonic on a string, a...
Ch. 16 - Prob. 11QCh. 16 - If a wave yx, t = 6.0mm sinkx 600 rad/st ...Ch. 16 - Prob. 2PCh. 16 - A wave has an angular frequency of 110 rad/s and a...Ch. 16 - Prob. 4PCh. 16 - A sinusoidal wave travels along a string. The time...Ch. 16 - Prob. 6PCh. 16 - A transverse sinusoidal wave is moving along a...Ch. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - The equation of a transverse wave traveling along...Ch. 16 - Prob. 11PCh. 16 - GO The function yx, t = 15.0 cm cosx 15 t, with x...Ch. 16 - Prob. 13PCh. 16 - The equation of a transverse wave on a string is y...Ch. 16 - Prob. 15PCh. 16 - The speed of a transverse wave on a string is 170...Ch. 16 - The linear density of a string is 1.6 104 kg/m. A...Ch. 16 - Prob. 18PCh. 16 - SSM What is the speed of a transverse wave in a...Ch. 16 - The tension in a wire clamped at both ends is...Ch. 16 - ILW A 100 g wire is held under a tension of 250 N...Ch. 16 - A sinusoidal wave is traveling on a string with...Ch. 16 - SSM ILW A sinusoidal transverse wave is traveling...Ch. 16 - Prob. 24PCh. 16 - A uniform rope of mass m and length L hangs from a...Ch. 16 - A string along which waves can travel is 2.70 m...Ch. 16 - Prob. 27PCh. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Prob. 31PCh. 16 - What phase difference between two identical...Ch. 16 - Prob. 33PCh. 16 - Prob. 34PCh. 16 - SSM Two sinusoidal waves of the same frequency...Ch. 16 - Four waves are to be sent along the same string,...Ch. 16 - GO These two waves travel along the same string:...Ch. 16 - Two sinusoidal waves of the same frequency are to...Ch. 16 - Two sinusoidal waves of the same period, with...Ch. 16 - Two sinusoidal waves with identical wavelengths...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - SSM WWW What are a the lowest frequency, b the...Ch. 16 - A 125 cm length of string has mass 2.00 g and...Ch. 16 - Prob. 45PCh. 16 - String A is stretched between two clamps separated...Ch. 16 - Prob. 47PCh. 16 - If a transmission line in a cold climate collects...Ch. 16 - Prob. 49PCh. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - A rope, under a tension of 200 N and fixed at both...Ch. 16 - Prob. 53PCh. 16 - Prob. 54PCh. 16 - GO The following two waves are sent in opposite...Ch. 16 - A standing wave pattern on a string is described...Ch. 16 - A generator at one end of a very long string...Ch. 16 - GO In Fig. 16-42, a string, tied to a sinusoidal...Ch. 16 - GO In Fig. 16-43, an aluminum wire, of length L1 =...Ch. 16 - Prob. 60PCh. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - A wave has a speed of 240 m/s and a wavelength of...Ch. 16 - The equation of a transverse wave traveling alone...Ch. 16 - The equation of a transverse wave traveling along...Ch. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - A transverse sinusoidal wave is generated at one...Ch. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - a What is the fastest transverse wave that can be...Ch. 16 - A standing wave results from the sum of two...Ch. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - When played in a certain manner, the lowest...Ch. 16 - A sinusoidal transverse wave traveling in the...Ch. 16 - Two sinusoidal waves of the same wavelength travel...Ch. 16 - Prob. 83PCh. 16 - Prob. 84PCh. 16 - Prob. 85PCh. 16 - a Write an equation describing a sinusoidal...Ch. 16 - A wave on a string is described by yx, t = 15.0...Ch. 16 - Prob. 88PCh. 16 - Two waves are described by...Ch. 16 - Prob. 90PCh. 16 - SSM In a demonstration, a 1.2 kg horizontal rope...Ch. 16 - Prob. 92PCh. 16 - A traveling wave on a string is described by...Ch. 16 - Prob. 94PCh. 16 - Prob. 95PCh. 16 - Consider a loop in the standing wave created by...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardSound is detected when a sound wave causes the tympanic membrane (the ear drum) to vibrate. Typically, the diameter of this membrane is about 8.4 mm in humans. A) how much energy is delivered to the eardrum each second when someone whispers (20 dB) into your ear? B) to comprehend how sensitive the ear is to very small amounts of energy, calculate how fast a typical 2.0 mg mosquito would have to fly (in mm/s) to have this amount of kinetic energy.arrow_forwardThe speed of sound in air (in meters per second) depends on temperature according to the approximate expression υ = 331.5 + 0.607TC where TC is the Celsius temperature. In dry air, the temperature decreases about 1°C for every 150-m rise in altitude. (a) Assume this change is constant up to an altitude of 9 000 m. What time interval is required for the sound from an airplane flying at 9 000 m to reach the ground on a day when the ground temperature is 30°C? (b) What If? Compare your answer with the time interval required if the air were uniformly at 30°C. Which time interval is longer?arrow_forward
- A sound wave propagating in air has a frequency of (7.86) kHz Calculate the change in wavelength when the wave, initially traveling in a region where T = (27.35}°C, enters a region where T = (5.99)°C.arrow_forwardThe coldest and hottest temperatures ever recorded in Cuba are 33.1 degrees Fahrenheight (312 K), respectively, What is the speed of sound in air (in m/s) at each temperature? (a) speed of sound at 33.1 degrees Fahrenheight (m/s) (b) speed of sound at 101.8 degrees Fahrenheight (m/s)arrow_forwardEnergy Delivered to the Ear. Sound is detected when a sound wave causes the tympanic membrane (the eardrum) to vibrate. Typically, the diameter of this membrane is about 8.4 mm in humans. (a) How much energy is delivered to the eardrum each second when someone whispers (20 dB) a secret in your ear? (b) To comprehend how sensitive the ear is to very small amounts of energy, calculate how fast a typical 2.0 mg mosquito would have to fly (in mm/s) to have this amount of kinetic energy.arrow_forward
- As a certain sound wave travels through the air, it produces pressure variations (above and below atmospheric pressure) given by AP = 1.30 sin(xx - 330xt) in SI units. (Note: Use the following values as needed, unless otherwise specified. The equilibrium density of air is p = 1.20 kg/m³. Pressure variations AP are measured relative to atmospheric pressure, 1.013 x 105 Pa.) (a) Find the amplitude of the pressure variations. Pa (b) Find the frequency of the sound wave. Hz (c) Find the wavelength in air of the sound wave. m (d) Find the speed of the sound wave. m/s Need Help? Read It Watch Itarrow_forwardAssume that the displacement (s) of air is proportional to the pressure difference (Δp) created by a sound wave. Displacement(s) further depends on the speed of sound (v), the density of air (⍴) and the frequency (f). If Δp ~ 10Pa, v ~ 300 m/s, ⍴ ~ 1 kg / m3 and f ~ 1000 Hz, then s will be of the order of (take the multiplicative constant to be 1) 1) 1 mm 2) 10 mm 3) 1 / 10 mm 4) 3 / 100 mmarrow_forwardThe intensity of a sound wave, as it strikes a circular ear drum, is 0.65 W/m2. The amount of energy carried in this wave is 6 × 10-6 J, and the sound lasts for one second. Part (a) Calculate the radius of the ear drum, in meters. Part (b) If the sound wave travels at 326 m/s and has a wavelength of 1.1 m, calculate its frequency.arrow_forward
- 57. ssm A loudspeaker has a circular opening with a radius of 0.0950 m. The electrical power needed to operate the speaker is 25.0 W. The aver- age sound intensity at the opening is 17.5 W/m². What percentage of the electrical power is converted by the speaker into sound power?arrow_forwardA certain transverse wave is described by y (x, t) = (6.50 mm) cos 2π (x / 28.0 cm - t / 0.0360s) where t is expressed in seconds and x in centimeters. Determine (a) the amplitude, (b) frequency, (c) wavelength, and (d) the speed of wave propagation.arrow_forwardThe relationship between the number of decibles B and the intensity I in watts per square meteris denoted by the equation B = 10log(10^12 x I). If the intensity of a given sound is increased by a factor of 100, by how much does the number of decibels increase?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning