Concept explainers
The amplitudes and phase differences for four pairs of waves of equal wavelengths are (a) 2 mm, 6 mm, and π rad; (b) 3 mm, 5 mm, and π rad; (c) 7 min, 9 mm, and π rad; (d) 2 mm, 2 mm, and 0 rad. Each pair travels in the same direction along the same string. Without written calculation, rank the four pairs according to the amplitude of their resultant wave, greatest first. (Hint: Construct phasor diagrams.)
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Human Biology: Concepts and Current Issues (8th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Organic Chemistry (8th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Organic Chemistry
- Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forwardA sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardA taut rope has a mass of 0.180 kg and a length of 3.60 m. What power must be supplied to the rope so as to generate sinusoidal waves having an amplitude of 0.100 m and a wavelength of 0.500 m and traveling with a speed of 30.0 m/s?arrow_forward
- A wave is described by y = 0.020 0 sin (kx - t), where k = 2.11 rad/m, = 3.62 rad/s, x and y are in meters, and t is in seconds. Determine (a) (he amplitude, (b) the wavelength, (c) the frequency, and (d) the speed of the wave.arrow_forwardAs in Figure P18.16, a simple harmonic oscillator is attached to a rope of linear mass density 5.4 102 kg/m, creating a standing transverse wave. There is a 3.6-kg block hanging from the other end of the rope over a pulley. The oscillator has an angular frequency of 43.2 rad/s and an amplitude of 24.6 cm. a. What is the distance between adjacent nodes? b. If the angular frequency of the oscillator doubles, what happens to the distance between adjacent nodes? c. If the mass of the block is doubled instead, what happens to the distance between adjacent nodes? d. If the amplitude of the oscillator is doubled, what happens to the distance between adjacent nodes? FIGURE P18.16arrow_forwardA certain transverse wave is described by y(x,t)=Bcos[2π(xL−tτ)]y(x,t)=Bcos[2π(x/L−t/τ)], where B = 6.30 mm, LLlambda = 30.0 cm, and τ = 3.20×10−2 ss. Determine the wave's amplitude. Express your answer in meters. Determine the wave's wavelength. Express your answer in meters. Determine the wave's frequency. Express your answer in hertzes . Determine the wave's speed of propagation. Express your answer in meters per second. Determine the wave's direction of propagation. +x or -x?arrow_forward
- Two sinusoidal waves of the same frequency travel in the same direction along a string. If Ym1 = 4.1 cm, Ym2 = 3.9 cm, P₁ = 0, and ₂ = π/3 rad, what is the 42 amplitude of the resultant wave? Number i Units <arrow_forwardThe superposition of two waves y1=A sin(kx-wt) and y2=A sin(kx-wt+cp) results in a wave described by: y=0.3 sin(kx-wt+rt/3) where x and y are in meters and t in seconds.The amplitude A of y1 and y2 and the phase difference p are: A=0.3 m,=n/3 rad A=0.3m,p=2 r/3 rad A=0.15 m,=2r/3 rad A=0.15 m,p=n/3 rad None of the abovearrow_forwardWe have two waves -2.79 sin(k x - v t) and 1.5 cos(k x - v t) which add together to make a new combined wave A sin(k x - v t+θ). What is the value of θ in radians?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning