(a)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 21QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
(b)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 21QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
(c)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 21QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
(d)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 21QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
Want to see more full solutions like this?
Chapter 16 Solutions
Chemistry: Principles and Reactions
- Explain the meaning of: the electron partition function is equal to the degeneracy of the ground state.arrow_forward28. For each of the following species, add charges wherever required to give a complete, correct Lewis structure. All bonds and nonbonded valence electrons are shown. a. b. H H H H H :0-C-H H H H-C-H C. H H d. H-N-0: e. H H-O H-O H B=0 f. H—Ö—Ñ—Ö—H Norton Private Barrow_forwardAt 0oC and 1 atm, the viscosity of hydrogen (gas) is 8.55x10-5 P. Calculate the viscosity of a gas, if possible, consisting of deuterium. Assume that the molecular sizes are equal.arrow_forward
- Indicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardIndicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardDraw the skeletal structure of the alkane 4-ethyl-2, 2, 5, 5- tetramethylnonane. How many primary, secondary, tertiary, and quantenary carbons does it have?arrow_forward
- Electronic contribution to the heat capacity at constant volume A) is always zero B) is zero, except for excited levels whose energy is comparable to KT C) equals 3/2 Nk D) equals Nk exp(BE)arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardCalculate the packing factor of CaTiO3. It has a perovskite structure. Data: ionic radii Co²+ = 0.106 nm, Ti4+ = 0.064 nm, O² = 0.132 nm; lattice constant is a = 2(rTi4+ + ro2-). Ca2+ 02- T14+ Consider the ions as rigid spheres. 1. 0.581 or 58.1% 2. -0.581 or -58.1 % 3. 0.254 or 25.4%arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning