(a)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 18QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
(b)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 18QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
(c)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 18QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
(d)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 18QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
Want to see more full solutions like this?
Chapter 16 Solutions
Chemistry: Principles and Reactions
- A buffered solution containing dissolved aniline, CH,NH2, and aniline hydrochloride, CH, NH, Cl, has a pH of 5.41. Determine the concentration of CH, NH in the solution if the concentration of CH, NH, is 0.305 M. The pK of aniline is 9.13. [CHẠNH] = Calculate the change in pH of the solution, ApH, if 0.375 g NaOH is added to the buffer for a final volume of 1.40 L. Assume that any contribution of NaOH to the volume is negligible. ApH = Marrow_forwardShow work. don't give Ai generated solutionarrow_forwardShow work. don't give Ai generated solutionarrow_forward
- 1. Polyester Formation a. Draw the structure of the polyester formed (Seabacoyl Chloride + Ethylene Glycol). (Insert scanned hand-drawn structure or ChemDraw image.) b. What molecules are eliminated in this condensation reaction?arrow_forwardDon't used Ai solutionarrow_forwardWhat is the absorption spectrum of a solution of naphthalene in benzene , and the vibronic transitions responsible for the vibrational fine structure ?arrow_forward
- 3. Titanium(III) chloride can be used to catalyze the polymerization of ethylene. It is prepared by hydrogen reduction of Titanium(IV) chloride. Reaction of hydrogen gas with titanium(IV) chloride gas produces solid titanium(III) chloride and hydrogen chloride gas. (a) Write a BALANCED chemical reaction for the preparation of titanium(III) chloride (b) A 250 L reaction vessel at 325°C is filled with hydrogen gas to a pressure of 1.3 atm. Titanium(IV) chloride is then added to bring the total pressure to 3.00 atm. How many grams of titanium(III) chloride will be produced after completion of the reaction? (c) What will be the pressure of the resulting hydrogen chloride gas that is also produced?arrow_forward1. Sodium azide (NaN3) is the primary chemical substance used in automobile air bags. Upon impact, the decomposition of sodium azide is initiated to produce sodium metal and nitrogen gas which then inflates the bag. How many liters of nitrogen gas are produced at 1.15 atm and 30.0°C when 145.0 grams of sodium azide decomposes? 2. Calcium carbonate (such as that in limestone) reacts with aqueous hydrochloric acid to produce carbon dioxide, aqueous calcium chloride and water. How many liters of carbon dioxide are produced at 20°C and 745 torr when 3.583 grams of calcium carbonate is dissolved in solution containing 1.550 grams of hydrochloric acid?arrow_forwardShow all work (where appropriate) for full credit. 1. Describe (steps, equipment and quantities) how to accurately prepare 250.0 mL of a 0.0075 M solution of NaCl (aq) from a 500 mL, 0.0500 M stock solution. 2. Describe (steps, equipment and quantities) how to accurately prepare 250.0 mL of a 0.0075 M solution of NaCl (aq) from 100 g of solid NaCl.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning