Define the terms “product-favored System” and “reactant-favored System.” Give one example of each.
Interpretation:
The terms “product favored system” and “reactant favored system” are to be defined and one example of each has to be stated.
Concept Introduction:
A chemical process can be categorized as reactant-favored or product-favored. It depends upon the concentration of products and reactants at the stage of equilibrium. If products predominated over reactants, then it called product-favored process. If reactants are predominated over products, then it is called reactant-favored process.
Explanation of Solution
A system is said to be product favored if products predominate over reactants at the stage of equilibrium. These reactions are generally spontaneous in nature. For example: reaction of bromine with aluminum, rusting of iron and combustion of gasoline are product favored reactions. Some product favored reactions are shown below.
At equilibrium, if reactants predominate over products, then the system is categorized as reactant favored system. It is opposite of a product-favored process. An example of reactant-favored system is reaction of sodium metal and chlorine gas to produce sodium chloride.
Want to see more full solutions like this?
Chapter 16 Solutions
Chemistry: The Molecular Science
- Predict whether each of the following processes results in an increase in entropy in the system. (Define reactants and products as the system.) (a) Water vapor condenses to liquid water at 90 C and 1 atm pressure. (b) The exothermic reaction of Na(s) and Cl2(g) forms NaCl(s). (c) The endothermic reaction of H2 and I2 produces an equilibrium mixture of H2(g), I2(g), and HI(g). (d) Solid NaCl dissolves in water forming a saturated solution.arrow_forwardWhen a mixture of hydrogen and bromine is maintained at normal atmospheric pressure and heated above 200. °C in a closed container, the hydrogen and bromine react to form hydrogen bromide and a gas-phase equilibrium is established. Write a balanced chemical equation for the equilibrium reaction. Use bond enthalpies from Table 6.2 ( Sec. 6-6b) to estimate the enthalpy change for the reaction. Based on your answers to parts (a) and (b), which is more important in determining the position of this equilibrium, the entropy effect or the energy effect? In which direction will the equilibrium shift as the temperature increases above 200. °C? Explain. Suppose that the pressure were increased to triple its initial value. In which direction would the equilibrium shift? Why is the equilibrium not established at room temperature?arrow_forwardIndicate whether each statement below is true or false. If a statement is false, rewrite it to produce a closely related statement that is true. For a given reaction, the magnitude of the equilibrium constant is independent of temperature. If there is an increase in entropy and a decrease in enthalpy when reactants in their standard states are converted to products in their standard states, the equilibrium constant for the reaction must be negative. The equilibrium constant for the reverse of a reaction is the reciprocal of the equilibrium constant for the reaction itself. For the reaction H2O2(ℓ) ⇌ H2O(ℓ) + O2(g) the equilibrium constant is one half the magnitude of the equilibrium constant for the reaction 2H2O2(ℓ) ⇌ 2H2O(ℓ) + O2(g)arrow_forward
- Describe a nonchemical system that is not in equilibrium, and explain why equilibrium has not been achieved.arrow_forwardDescribe a nonchemical system that is in equilibrium, and explain how the principles of equilibrium apply to the system.arrow_forwardA process that is reactant-favored at equilibrium can never be spontaneous. This statement is (a) true (b) falsearrow_forward
- Silver carbonate, Ag2CO3, is a light yellow compound that decomposes when heated to give silver oxide and carbon dioxide: Ag2CO3(s)Ag2O(s)+CO2(g) A researcher measured the partial pressure of carbon dioxide over a sample of silver carbonate at 220C and found that it was 1.37 atm. Calculate the partial pressure of carbon dioxide at 25C. The standard enthalpies of formation of silver carbonate and silver oxide at 25C are 505.9 kJ/mol and 31.05 kJ/mol, respectively. Make any reasonable assumptions in your calculations. State the assumptions that you make, and note why you think they are reasonable.arrow_forward12.108 A nuclear engineer is considering the effect of discharging waste heat from a power plant into a lake and estimates that this may warm the water locally to 25 °C. One question to be considered is the effect of this temperature change on the uptake of CO2 by the water. The equilibrium constant for the reaction CO2+H2OH2CO3 ; is K=1.7103 at 25 °C. Because bonds form, the reaction is exothermic. (a) Will this reaction progress further toward products at higher temperatures near the water discharge with its warmer water than it would in the cooler lake water? Explain your reasoning. (b) Carbonic acid has a Kaof 2.5104 at 25 °C. What is the equilibrium constant for the CO2+2H2OHCO3+H3O+? (c) What additional factor should the engineer be considering about CO2 gas, probably before considering this reaction chemistry?arrow_forwardHydrogen gas and iodine gas react to form hydrogen iodide. If 0.500 mol H2 and 1.00 mol I2 are placed in a closed 10.0-L vessel, what is the mole fraction of HI in the mixture when equilibrium is reached at 205C? Use data from Appendix C and any reasonable approximations to obtain K.arrow_forward
- 9.96 Most first aid "cold packs" are based on the endothermic dissolution of ammonium nitrate in water: NH4NO3(s)NH4+(aq)+NO3(aq) H= 25.69 kJ A particular cold pack contains 50.0 g of NH4NO3 and 125.0 g of water. When the pack is squeezed, the NH4NO3dissolves in the water. If the pack and its contents are initially at 24.0°C, what is the lowest temperature that this bag could reach? (Assume that the ammonium nitrate solution has a specific heat of 4.25J g-l K-l, and that the heat capacity of the bag itself is small enough to be neglected.)arrow_forward5.11. Determine the numerical value of Q for the reaction conditions indicated.arrow_forwardUse thermochemical data (Appendix C) to decide whether the equilibrium constant for the following reaction will increase or decrease with temperature. 2NO2(g)+7H2(g)2NH3(g)+4H2O(g)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,