Concept explainers
Calculate the concentrations of all the species in a
Interpretation:
The concentration of all the species present in the sodium carbonate solution is to be calculated.
Concept introduction:
Salt is a strong electrolyte that dissociates completely when added to water.
When a salt contains an anion thatcomes from a weak acid, then the anion recombineswith water to produce a weak acid and hydroxide ions which ultimately forms a basic solution. Ifthe cation comes from a strong base,it does not recombine and is present in the solution as a free ion, without having any effect on the pH of the solution.
The reaction of the salt
Here,
The relationship between
Where,
Answer to Problem 154AP
Solution:
Explanation of Solution
Given information:
The concentration of the solution that contains sodium carbonate
All the species present in the salt solution are
The
But the anion
First step takes place as follows:
From table
Now, prepare an initial change equilibrium table and represent each of the species in terms of
Now, substitute these concentrations in equation (2) as follows:
Approximate the value
Substitute the value of
Thus,
Now,thesecond step proceeds as:
From table
Now, prepare an initial change equilibrium table and represent each of the species in terms of
Now, substitute these concentrations in equation (2) as follows:
Approximate the value
Substitute the value of
Thus,
The concentration of sodium and carbonate ions is as follows:
The concentration of
The concentration of hydroxide and hydrogen ions is as follows:
The concentration of all the given species present in the salt solution as follows:
Want to see more full solutions like this?
Chapter 16 Solutions
Chemistry
- Calculate the maximum concentration of Mg2+ (molarity) that can exist in a solution of pH 12.00.arrow_forwardExplain why the pH does not change significantly when a small amount of an acid or a base is added to a solution that contains equal amounts of the base NH3 and a salt of its conjugate acid NH4CI.arrow_forward. The concepts of acid-base equilibria were developed in this chapter for aqueous solutions (in aqueous solutions, water is the solvent and is intimately involved in the equilibria). However, the Brønsted-Lowry acid-base theory can be extended easily to other solvents. One such solvent that has been investigated in depth is liquid ammonia. NH3. a. Write a chemical equation indicating how HCl behaves as an acid in liquid ammonia. b. Write a chemical equation indicating how OH- behaves as a base in liquid ammonia.arrow_forward
- Strong Acids, Weak Acids, and pH Two 0.10-mol samples of the hypothetical monoprotic acids HA(aq) and HB(aq) are used to prepare 1.0-L stock solutions of each acid. a Write the chemical reactions for these acids in water. What are the concentrations of the two acid solutions? b One of these acids is a strong acid, and one is weak. What could you measure that would tell you which acid was strong and which was weak? c Say that the HA(aq) solution has a pH of 3.7. Is this the stronger of the two acids? How did you arrive at your answer? d What is the concentration of A(aq) in the HA solution described in part c? e If HB(aq) is a strong acid, what is the hydronium-ion concentration? f In the solution of HB(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), B(aq), HB(aq), or OH(aq)? How did you decide? g In the solution of HA(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), A+(aq), HA(aq), or OH(aq)? How did you decide? h Say you add 1.0 L of pure water to a solution of HB. Would this water addition make the solution more acidic, make it less acidic, or not change the acidity of the original solution? Be sure to fully justify your answer. i You prepare a 1.0-L solution of HA. You then take a 200-mL sample of this solution and place it into a separate container. Would this 200 mL sample be more acidic, be less acidic, or have the same acidity as the original 1.0-L solution of HA(aq)? Be sure to support your answer.arrow_forwardThe weak base, CIO (hypochlorite ion), is used in the form of NaCIO as a disinfectant in swimming pools and water treatment plants. What are the concentrations of HCIO and OH and the pH of a 0.015 M solution of NaCIO?arrow_forwardAn aqueous solution contains formic acid and formate ion. Determine the direction in which the pH will change if each of the following chemicals is added to the solution. (a) HCl (b) NaHSO4 (c) CH3COONa (d) KBr (e) H2Oarrow_forward
- A 1000.-mL solution of hydrochloric acid has a pH of 1.3. Calculate the mass (g) of HCl dissolved in the solution.arrow_forwardEqual molar quantities of ammonia and sodium dihydrogen phosphate (NaH2PO4) are mixed. (a) Write a balanced, net ionic equation for the acid-base reaction that can, in principle, occur. (b) Does the equilibrium lie to the right or left?arrow_forwardA chemist wanted to determine the concentration of a solution of lactic acid, HC3H5O3. She found that the pH of the solution was 2.60. What was the concentration of the solution? The Kd of lactic acid is 1.4 104.arrow_forward
- Using the diagrams shown in Problem 10-117, which of the solutions would have the greatest buffer capacity, that is, greatest protection against pH change, when the following occurs? a. A strong acid is added to the solution. b. A strong base is added to the solution.arrow_forwardState whether 1 M solutions of the following salts in water would be acidic, basic, or neutral. (a) FeCl3 (b) BaI2(c) NH4NO2(d) Na2HPO4 (e) K3PO4arrow_forwardWhat is the pH of a solution obtained by mixing 235 mL of NaOH with a pH of 11.57 and 316 mL of Sr(OH)2 with a pH of 12.09? Assume that volumes are additive.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning