From the given salt solution systems, the X − ion that has the weakest conjugate acidand the decreasing order of the basic strength of the given anions, is to be determined. Concept introduction: A salt is a strong electrolyte, which dissociates completely when added to water. When a salt contains an anion that comes from a weak acid then the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation, if it comes from a strong base, does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution. The reaction of the salt ( BA ) which takes place is: A − ( aq ) + H 2 O ( l ) ⇌ HA ( aq ) + OH − ( aq ) Here, A − comes from the weak acid HA and B + comes from strong base BOH . The pH of this solution is determined by the [ OH − ] The relationship between K b , K a and K w gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa. K a × K b = K w …… (1) K b is the measure of dissociation of a base and is known as the base-ionization constant, which is specific at a particular temperature. K b = [ OH − ] [ HA ] [ A − ] …… (2)
From the given salt solution systems, the X − ion that has the weakest conjugate acidand the decreasing order of the basic strength of the given anions, is to be determined. Concept introduction: A salt is a strong electrolyte, which dissociates completely when added to water. When a salt contains an anion that comes from a weak acid then the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation, if it comes from a strong base, does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution. The reaction of the salt ( BA ) which takes place is: A − ( aq ) + H 2 O ( l ) ⇌ HA ( aq ) + OH − ( aq ) Here, A − comes from the weak acid HA and B + comes from strong base BOH . The pH of this solution is determined by the [ OH − ] The relationship between K b , K a and K w gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa. K a × K b = K w …… (1) K b is the measure of dissociation of a base and is known as the base-ionization constant, which is specific at a particular temperature. K b = [ OH − ] [ HA ] [ A − ] …… (2)
Solution Summary: The author explains the relationship between the strength of an acid and its conjugate base or vice-versa.
From the given salt solution systems, the X− ion that has the weakest conjugate acidand the decreasing order of the basic strength of the given anions, is to be determined.
Concept introduction:
A salt is a strong electrolyte, which dissociates completely when added to water.
When a salt contains an anion that comes from a weak acid then the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation, if it comes from a strong base, does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution.
The reaction of the salt (BA) which takes place is:
A−(aq)+H2O(l)⇌HA(aq)+OH−(aq)
Here, A− comes from the weak acid HA and B+ comes from strong base BOH. The pH of this solution is determined by the [OH−]
The relationship between Kb, Ka and Kw gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa.
Ka×Kb=Kw …… (1)
Kb is the measure of dissociation of a base and is known as the base-ionization constant, which is specific at a particular temperature.
Using the critical constants for water
(refer to the table in the lecture slides),
calculate the second virial coefficient.
Assume that the compression factor (Z)
is expressed as an expansion series in
terms of pressure.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.