In Example 1 , evaluate D ‒ u f (3, 2) and D − v f (3, 2). Example 1 Computing directional derivatives Consider the paraboloid z = f ( x, y ) = 1 4 ( x 2 + 2 y 2 ) + 2 . Let P 0 be the point (3, 2) and consider the unit vectors u = 〈 1 2 , 1 2 〉 and v = 〈 1 2 , − 3 2 〉 a. Find the directional derivative of f at P 0 in the directions of u and v.
In Example 1 , evaluate D ‒ u f (3, 2) and D − v f (3, 2). Example 1 Computing directional derivatives Consider the paraboloid z = f ( x, y ) = 1 4 ( x 2 + 2 y 2 ) + 2 . Let P 0 be the point (3, 2) and consider the unit vectors u = 〈 1 2 , 1 2 〉 and v = 〈 1 2 , − 3 2 〉 a. Find the directional derivative of f at P 0 in the directions of u and v.
Solution Summary: The author evaluates the values of D_-uf(3,2) and
In Example 1, evaluate D‒u f(3, 2) and D−vf(3, 2).
Example 1 Computing directional derivatives
Consider the paraboloid z = f(x, y) =
1
4
(
x
2
+
2
y
2
)
+
2
. Let P0 be the point (3, 2) and consider the unit vectors
u =
〈
1
2
,
1
2
〉
and v =
〈
1
2
,
−
3
2
〉
a. Find the directional derivative of f at P0 in the directions of u and v.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Let f be a function whose graph consists of 5 line segments and a semicircle as shown in the figure below.
Let g(x) = √ƒƒ(t) dt .
0
3
2
-2
2
4
5
6
7
8
9
10
11
12
13
14
15
1. g(0) =
2. g(2) =
3. g(4) =
4. g(6) =
5. g'(3) =
6. g'(13)=
The expression 3 | (3+1/+1)
of the following integrals?
A
Ов
E
+
+
+ +
18
3+1+1
3++1
3++1
(A) √2×14 dx
x+1
(C) 1½-½√ √ ² ( 14 ) d x
(B) √31dx
(D) So 3+x
-dx
is a Riemann sum approximation of which
5
(E) 1½√√3dx
2x+1
2. Suppose the population of Wakanda t years after 2000 is given by the equation
f(t) = 45000(1.006). If this trend continues, in what year will the population reach 50,000
people? Show all your work, round your answer to two decimal places, and include units. (4
points)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY