Floating-point operations In general, real numbers (with infinite decimal expansions) cannot be represented exactly in a computer by floating-point numbers (with finite decimal expansions). Suppose that floating-point numbers on a particular computer carry an error of at most 10 –16 . Estimate the maximum error that is committed in doing the following arithmetic operations. Express the error in absolute and relative (percent) terms. a. f ( x , y ) = xy b. f ( x , y ) = x / y c. F ( x , y , z ) = xz d. F ( x , y , z ) = ( x / y ) / z
Floating-point operations In general, real numbers (with infinite decimal expansions) cannot be represented exactly in a computer by floating-point numbers (with finite decimal expansions). Suppose that floating-point numbers on a particular computer carry an error of at most 10 –16 . Estimate the maximum error that is committed in doing the following arithmetic operations. Express the error in absolute and relative (percent) terms. a. f ( x , y ) = xy b. f ( x , y ) = x / y c. F ( x , y , z ) = xz d. F ( x , y , z ) = ( x / y ) / z
Solution Summary: The author calculates the maximum error for f(x,y)=xy and expresses it in absolute and relative terms.
Floating-point operations In general, real numbers (with infinite decimal expansions) cannot be represented exactly in a computer by floating-point numbers (with finite decimal expansions). Suppose that floating-point numbers on a particular computer carry an error of at most 10–16. Estimate the maximum error that is committed in doing the following arithmetic operations. Express the error in absolute and relative (percent) terms.
Write the given third order linear equation as an equivalent system of first order equations with initial values.
Use
Y1 = Y, Y2 = y', and y3 = y".
-
-
√ (3t¹ + 3 − t³)y" — y" + (3t² + 3)y' + (3t — 3t¹) y = 1 − 3t²
\y(3) = 1, y′(3) = −2, y″(3) = −3
(8) - (888) -
with initial values
Y
=
If you don't get this in 3 tries, you can get a hint.
Question 2
1 pts
Let A be the value of the triple integral
SSS.
(x³ y² z) dV where D is the region
D
bounded by the planes 3z + 5y = 15, 4z — 5y = 20, x = 0, x = 1, and z = 0.
Then the value of sin(3A) is
-0.003
0.496
-0.408
-0.420
0.384
-0.162
0.367
0.364
Question 1
Let A be the value of the triple integral SSS₂ (x + 22)
=
1 pts
dV where D is the
region in
0, y = 2, y = 2x, z = 0, and
the first octant bounded by the planes x
z = 1 + 2x + y. Then the value of cos(A/4) is
-0.411
0.709
0.067
-0.841
0.578
-0.913
-0.908
-0.120
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.