Solitary critical points A function of one variable has the property that a local maximum (or minimum) occurring at the only critical point is also the absolute maximum (or minimum) (for example. f ( x ) = x 2 ). Does the same result hold for a function of two variables? Show that the following functions have the property that they have a single local maximum (or minimum), occurring at the only critical point, but that the local maximum (or minimum) is not an absolute maximum (or minimum) on ¡ 2 . a. f ( x , y ) = 3 xe y – x 3 – e 3 y b. f ( x , y ) = ( 2 y 2 − y 4 ) ( e x + 1 1 + x 2 ) − 1 1 + x 2 This property has the following interpretation. Suppose that a surface has a single local minimum that is not the absolute minimum. Then water can be poured into the basin around the local minimum and the surface never overflows, even though there are points on the surface below the local minimum.
Solitary critical points A function of one variable has the property that a local maximum (or minimum) occurring at the only critical point is also the absolute maximum (or minimum) (for example. f ( x ) = x 2 ). Does the same result hold for a function of two variables? Show that the following functions have the property that they have a single local maximum (or minimum), occurring at the only critical point, but that the local maximum (or minimum) is not an absolute maximum (or minimum) on ¡ 2 . a. f ( x , y ) = 3 xe y – x 3 – e 3 y b. f ( x , y ) = ( 2 y 2 − y 4 ) ( e x + 1 1 + x 2 ) − 1 1 + x 2 This property has the following interpretation. Suppose that a surface has a single local minimum that is not the absolute minimum. Then water can be poured into the basin around the local minimum and the surface never overflows, even though there are points on the surface below the local minimum.
Solitary critical points A function of one variable has the property that a local maximum (or minimum) occurring at the only critical point is also the absolute maximum (or minimum) (for example. f(x) = x2). Does the same result hold for a function of two variables? Show that the following functions have the property that they have a single local maximum (or minimum), occurring at the only critical point, but that the local maximum (or minimum) is not an absolute maximum (or minimum) on ¡2.
a. f(x, y) = 3xey – x3 – e3y
b.
f
(
x
,
y
)
=
(
2
y
2
−
y
4
)
(
e
x
+
1
1
+
x
2
)
−
1
1
+
x
2
This property has the following interpretation. Suppose that a surface has a single local minimum that is not the absolute minimum. Then water can be poured into the basin around the local minimum and the surface never overflows, even though there are points on the surface below the local minimum.
Formula Formula A function f(x) attains a local maximum at x=a , if there exists a neighborhood (a−δ,a+δ) of a such that, f(x)<f(a), ∀ x∈(a−δ,a+δ),x≠a f(x)−f(a)<0, ∀ x∈(a−δ,a+δ),x≠a In such case, f(a) attains a local maximum value f(x) at x=a .
A body of mass m at the top of a 100 m high tower is thrown vertically upward with an initial velocity of 10 m/s. Assume that the air resistance FD acting on the body is proportional to the velocity V, so that FD=kV. Taking g = 9.75 m/s2 and k/m = 5 s, determine: a) what height the body will reach at the top of the tower, b) how long it will take the body to touch the ground, and c) the velocity of the body when it touches the ground.
A chemical reaction involving the interaction of two substances A and B to form a new compound X is called a second order reaction. In such cases it is observed that the rate of reaction (or the rate at which the new compound is formed) is proportional to the product of the remaining amounts of the two original substances. If a molecule of A and a molecule of B combine to form a molecule of X (i.e., the reaction equation is A + B ⮕ X), then the differential equation describing this specific reaction can be expressed as:
dx/dt = k(a-x)(b-x)
where k is a positive constant, a and b are the initial concentrations of the reactants A and B, respectively, and x(t) is the concentration of the new compound at any time t. Assuming that no amount of compound X is present at the start, obtain a relationship for x(t). What happens when t ⮕∞?
Consider a body of mass m dropped from rest at t = 0. The body falls under the influence of gravity, and the air resistance FD opposing the motion is assumed to be proportional to the square of the velocity, so that FD = kV2. Call x the vertical distance and take the positive direction of the x-axis downward, with origin at the initial position of the body. Obtain relationships for the velocity and position of the body as a function of time t.
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.