Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 33 . f ( x , y ) = 8 + x 2 + 3 y 2 ; P ( − 3 , − 1 )
Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 33 . f ( x , y ) = 8 + x 2 + 3 y 2 ; P ( − 3 , − 1 )
Interpreting directional derivativesA function f and a point P are given. Let θ correspond to the direction of the directional derivative.
a. Find the gradient and evaluate it at P.
b. Find the angles θ (with respect to the positive x-axis) associated with the directions of maximum increase, maximum decrease, and zero change.
c. Write the directional derivative at P as a function of θ; call this function g.
d. Find the value of θ that maximizes g(θ) and find the maximum value.
e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient.
33.
f
(
x
,
y
)
=
8
+
x
2
+
3
y
2
;
P
(
−
3
,
−
1
)
Find a plane containing the point (3, -3, 1) and the line of intersection of the planes 2x + 3y - 3z = 14
and -3x - y + z = −21.
The equation of the plane is:
Determine whether the lines
L₁ : F(t) = (−2, 3, −1)t + (0,2,-3) and
L2 : ƒ(s) = (2, −3, 1)s + (−10, 17, -8)
intersect. If they do, find the point of intersection.
● They intersect at the point
They are skew lines
They are parallel or equal
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY