Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡ 2 or ¡ 3 , and let c be a constant. Prove the following gradient rules. a. Constants Rule: ▿ ( cf ) = c ▿ f b. Sum Rule : ▿ ( f + g ) = ▿ f + ▿ g c. Product Rule: ▿ ( fg ) = (▿ f ) g + f ▿ g d. Quotient Rule : ∇ ( f g ) = g ∇ f − f ∇ g g 2 e . Chain Rule: ∇ ( f ∘ g ) = f ’ ( g ) ∇ g , where f is a function of one variable
Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡ 2 or ¡ 3 , and let c be a constant. Prove the following gradient rules. a. Constants Rule: ▿ ( cf ) = c ▿ f b. Sum Rule : ▿ ( f + g ) = ▿ f + ▿ g c. Product Rule: ▿ ( fg ) = (▿ f ) g + f ▿ g d. Quotient Rule : ∇ ( f g ) = g ∇ f − f ∇ g g 2 e . Chain Rule: ∇ ( f ∘ g ) = f ’ ( g ) ∇ g , where f is a function of one variable
Solution Summary: The author explains that the constant rule nabla is differentiable at the point (x,y,z).
Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡2 or ¡3, and let c be a constant. Prove the following gradient rules.
a. Constants Rule: ▿ (cf) = c▿f
b. Sum Rule: ▿ (f + g) = ▿f + ▿g
c. Product Rule: ▿ (fg) = (▿f)g + f▿g
d. Quotient Rule:
∇
(
f
g
)
=
g
∇
f
−
f
∇
g
g
2
e. Chain Rule:
∇
(
f
∘
g
)
=
f
’
(
g
)
∇
g
, where f is a function of one variable
With integration, one of the major concepts of calculus. Differentiation is the derivative or rate of change of a function with respect to the independent variable.
Write the given third order linear equation as an equivalent system of first order equations with initial values.
Use
Y1 = Y, Y2 = y', and y3 = y".
-
-
√ (3t¹ + 3 − t³)y" — y" + (3t² + 3)y' + (3t — 3t¹) y = 1 − 3t²
\y(3) = 1, y′(3) = −2, y″(3) = −3
(8) - (888) -
with initial values
Y
=
If you don't get this in 3 tries, you can get a hint.
Question 2
1 pts
Let A be the value of the triple integral
SSS.
(x³ y² z) dV where D is the region
D
bounded by the planes 3z + 5y = 15, 4z — 5y = 20, x = 0, x = 1, and z = 0.
Then the value of sin(3A) is
-0.003
0.496
-0.408
-0.420
0.384
-0.162
0.367
0.364
Question 1
Let A be the value of the triple integral SSS₂ (x + 22)
=
1 pts
dV where D is the
region in
0, y = 2, y = 2x, z = 0, and
the first octant bounded by the planes x
z = 1 + 2x + y. Then the value of cos(A/4) is
-0.411
0.709
0.067
-0.841
0.578
-0.913
-0.908
-0.120
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.