
Concept explainers
(a)
To find:The function that represent the situation of the given equation.
(a)

Answer to Problem 67E
The function that represent the situation of the given equation is
Explanation of Solution
Given information:
The given equationis
The height is
The initial velocity is
Calculation:
Using the position
The function is.
Therefore, the function that represent the situation of the given equation is
(b)
To graph: For the given function.
(b)

Explanation of Solution
Given information:
The given function is
Graph:
The graph for the given function is shown in figure (1).
Figure (1)
Interpretation: Graph for the function
(c)
To find: The average rate of change of the function from
(c)

Answer to Problem 67E
The average rate of change of the function from
Explanation of Solution
Given information:
The given equation is
The values are
Calculation:
Average rate of change of the function from
Calculate the values at
Calculate average rate of change of the function from
Therefore, the average rate of change of the function from
(d)
To find: The behavior of slope of the secant line through
(d)

Answer to Problem 67E
The slope of the secant line through
Explanation of Solution
Given information:
The given equation is
The values are
Calculation:
The average rate of change between any two points
Therefore, the slope of the secant line through
(e)
To find: The slope of the secant line through
(e)

Answer to Problem 67E
The slope of the secant line through
Explanation of Solution
Given information:
The given equation is
The values are
Calculation:
Using the above value.
The equation of secant line is.
Therefore, the slope of the secant line through
(f)
To graph: For the secant line.
(f)

Explanation of Solution
Given information:
The secant line is
Graph:
The graph for the secant line is shown in figure (1).
Figure (1)
Interpretation: Graph for the secant line
Chapter 1 Solutions
EBK PRECALCULUS W/LIMITS
- Pls help ASAParrow_forward9. a) Determie values of a and b so that the function is continuous. ax - 2b f(x) 2 x≤-2 -2x+a, x ≥2 \-ax² - bx + 1, −2 < x < 2) 9b) Consider f(x): = 2x²+x-3 x-b and determine all the values of b such that f(x) does not have a vertical asymptote. Show work.arrow_forwardPls help ASAParrow_forward
- 3. True False. If false create functions that prove it is false. Note: f(x) = g(x). a) If_lim ƒ(x) = ∞ and_lim g(x) = ∞,then_lim [ƒ(x) − g(x)] = 0 x→ 0+ x→0+ x→0+ b) If h(x) and g(x) are continuous at x = c, and if h(c) > 0 and g(c) = 0, then h(x) lim. will = x→c g(x) c) If lim f(x) = 0 and lim g(x) = 0 then lim f(x) does not exist. x-a x-a x→a g(x)arrow_forwardPls help ASAParrow_forward15. a) Consider f(x) = x-1 3x+2 and use the difference quotient to determine the simplified expression in terms of x, for the slope of any tangent to y = f(x). Also, determine the slope at x = 2. 15 b) Determine the equation of the tangent to f(x) at x = 2. Final answer in Standard Form Ax + By + C = 0, A ≥ 0, with no fractions or decimals.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





