Mechanics of Materials, 7th Edition
7th Edition
ISBN: 9780073398235
Author: Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David F. Mazurek
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1.5, Problem 38P
Link BC is 6 mm thick, has a width w = 25 mm, and is made of a steel with a 480-MPa ultimate strength in tension. What is the factor of safety used if the structure shown was designed to support a 16-kN load P?
Fig. P1.38 and P1.39
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2.The rigid bar ABC shown in Fig.(1) is hinged at A and supported by a steel rod at B.
Determine the largest load P that can be applied at C if the stress in the steel rod is limited
to 30Ksi and the vertical movement of end C must not exceed 0.lin.
Steel
L= 4ft
A = 0.5in?
E = 29 • 10°psi
A
B
C
3ft
to
2ft
P
A pin-connected structure is supported and loaded as shown. Member ABCD is rigid and is horizontal before the load P is applied.
Bars (1) and (2) are both made from steel [E = 30,000 ksi] and both have a cross-sectional area of 1.25 in.?. If the normal stress in bar
(1) must be limited to 31 ksi, determine the maximum load P that may be applied to the rigid bar.
120 in.
80 in.
(2)
(1)
B
D
54 in.
54 in.
24 in.
P
A pin-connected structure is supported and loaded as shown. Member ABCD is rigid and is horizontal before the load P is applied.
Bars (1) and (2) are both made from steel [E = 30,000 ksi] and both have a cross-sectional area of 1.25 in.?. If the normal stress in bar
(1) must be limited to 23 ksi, determine the maximum load P that may be applied to the rigid bar.
120 in.
80 in.
(2)
(1)
B
C
54 in.
54 in.
24 in.
O 40.7 kips
O 60.3 kips
32.2 kips
43.1 kips
Chapter 1 Solutions
Mechanics of Materials, 7th Edition
Ch. 1.2 - Two solid cylindrical rods AB and BC are welded...Ch. 1.2 - Two solid cylindrical rods AB and BC are welded...Ch. 1.2 - Two solid cylindrical rods AB and BC are welded...Ch. 1.2 - Two solid cylindrical rods AB and BC are welded...Ch. 1.2 - A strain gage located at C on the surface of bone...Ch. 1.2 - Two brass rods AB and BC, each of uniform...Ch. 1.2 - Each of the four vertical links has an 8 36-mm...Ch. 1.2 - Link AC has a uniform rectangular cross section 18...Ch. 1.2 - Three forces, each of magnitude P = 4 kN, are...Ch. 1.2 - Link BD consists of a single bar 1 in. wide and 12...
Ch. 1.2 - For the Pratt bridge truss and loading shown,...Ch. 1.2 - The frame shown consists of four wooden members,...Ch. 1.2 - An aircraft tow bar is positioned by means of a...Ch. 1.2 - Two hydraulic cylinders are used to control the...Ch. 1.2 - Determine the diameter of the largest circular...Ch. 1.2 - Two wooden planks, each 12 in. thick and 9 in....Ch. 1.2 - When the force P reached 1600 lb, the wooden...Ch. 1.2 - A load P is applied to a steel rod supported as...Ch. 1.2 - The axial force in the column supporting the...Ch. 1.2 - Three wooden planks are fastened together by a...Ch. 1.2 - A 40-kN axial load is applied to a short wooden...Ch. 1.2 - An axial load P is supported by a short W8 40...Ch. 1.2 - Link AB, of width b = 2 in. and thickness t=14...Ch. 1.2 - Determine the largest load P that can be applied...Ch. 1.2 - Knowing that = 40 and P = 9 kN, determine (a) the...Ch. 1.2 - The hydraulic cylinder CF, which partially...Ch. 1.2 - For the assembly and loading of Prob. 1.7,...Ch. 1.2 - Two identical linkage-and-hydraulic-cylinder...Ch. 1.5 - Two wooden members of uniform rectangular cross...Ch. 1.5 - Two wooden members of uniform rectangular cross...Ch. 1.5 - The 1.4-kip load P is supported by two wooden...Ch. 1.5 - Two wooden members of uniform cross section are...Ch. 1.5 - A centric load P is applied to the granite block...Ch. 1.5 - A 240-kip load P is applied to the granite block...Ch. 1.5 - A steel pipe of 400-mm outer diameter is...Ch. 1.5 - A steel pipe of 400-mm outer diameter is...Ch. 1.5 - A steel loop ABCD of length 5 ft and of 38-in....Ch. 1.5 - Link BC is 6 mm thick, has a width w = 25 mm, and...Ch. 1.5 - Link BC is 6 mm thick and is made of a steel with...Ch. 1.5 - Members AB and BC of the truss shown are made of...Ch. 1.5 - Members AB and BC of the truss shown are made of...Ch. 1.5 - Link AB is to be made of a steel for which the...Ch. 1.5 - Two wooden members are joined by plywood splice...Ch. 1.5 - For the joint and loading of Prob. 1.43, determine...Ch. 1.5 - Three 34-in.-diameter steel bolts are to be used...Ch. 1.5 - Three steel bolts are to be used to attach the...Ch. 1.5 - A load P is supported as shown by a steel pin that...Ch. 1.5 - A load P is supported as shown by a steel pin that...Ch. 1.5 - A steel plate 14 in. thick is embedded in a...Ch. 1.5 - Determine the factor of safety for the cable...Ch. 1.5 - Link AC is made of a steel with a 65-ksi ultimate...Ch. 1.5 - Solve Prob. 1.51, assuming that the structure has...Ch. 1.5 - Each of the two vertical links CF connecting the...Ch. 1.5 - Solve Prob. 1.53, assuming that the pins at C and...Ch. 1.5 - In the structure shown, an 8-mm-diameter pin is...Ch. 1.5 - In an alternative design for the structure of...Ch. 1.5 - Prob. 57PCh. 1.5 - The Load and Resistance Factor Design method is to...Ch. 1 - In the marine crane shown, link CD is known to...Ch. 1 - Two horizontal 5-kip forces are applied to pin B...Ch. 1 - For the assembly and loading of Prob. 1.60,...Ch. 1 - Two steel plates are to be held together by means...Ch. 1 - A couple M of magnitude 1500 N m is applied to...Ch. 1 - Knowing that link DE is 18 in. thick and 1 in....Ch. 1 - A 58-in.-diameter steel rod AB is fitted to a...Ch. 1 - In the steel structure shown, a 6-mm-diameter pin...Ch. 1 - Prob. 67RPCh. 1 - A force P is applied as shown to a steel...Ch. 1 - The two portions of member AB are glued together...Ch. 1 - The two portions of member AB are glued together...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- PROBLEM 1 Determine the allowable weight that the assembly can handle if the cable AB has a working stress of 200 Mpa and cable AC has a working stress of 150 Mpa. The cable cross sectional areas are 300 mm? for cable AB and 330 mm2 for cable AC. B 50° 28° A Warrow_forwardThe steel frame (E = 200 GPa) shown has a diagonal brace BD with an area of 1920 mm2. Determine the largest allowable load P if the change in length of member BD is not to exceed 1.9 mm.The largest allowable load P isarrow_forwardThe rigid bar ABC is supported by a pin at A and a steel rod at B. Determine the largest vertical load P that can be applied at C if the stress in the steel rod is limited to 35 ksi and the vertical movement of end C must not exceed 0.12 in. Neglect the weight of the members.arrow_forward
- The bars EF and FG in the mechanism shown are made of steel, while the bar GH is made of aluminum. The compound bar is attached to a rigid support at H and to a galvanized wire rope at E. Although bar ABC is rigid, it can rotate freely at A. When the loads P1 = 10 kN, P2 = 100 kN, and P3 = 80 kN are applied, determine: a. the net deformation (in mm) of the compound bar b. the horizontal deflection (in mm) of point C (neglect vertical deflection) c. the angle of tilt (in °) of bar ABC Assume that pulley D is linked to a rigid plate, is frictionless, and negligible sizearrow_forwardA pin-connected structure is supported and loaded as shown. Member ABCD is rigid and is horizontal before the load P is applied. Bars (1) and (2) are both made from steel [E = 30,000 ksi] and both have a cross-sectional area of 1.5 in.². Assume lengths of a = 32 in., b = 52 in., c = 24 in., L₁= 55 in., and L₂ = 100 in. The normal stress in bars (1) and (2) must be limited to 48 ksi. Determine the maximum load P that may be applied to the rigid bar. Answer: Pmax= Mi L₁ a (1) B Rigid bar b 4₂ kips Darrow_forwardPlease answer it with full explanation otherwise i will.......arrow_forward
- A pin-connected structure is supported and loaded as shown. Member ABCD is rigid and is horizontal before the load P is applied. Bars (1) and (2) are both made from steel [E = 30,000 ksi] and both have a cross-sectional area of 1.5 in.². Assume lengths of a = 48 in., b = 80 in., c = 32 in., L₁= 65 in., and L₂ = 120 in. The normal stress in L₁ a bars (1) and (2) must be limited to 48 ksi. Determine the maximum load P that may be applied to the rigid bar. Р (1) B Rigid bar b L₂ с Darrow_forwardA pin-connected structure is supported and loaded as shown. Member ABCD is rigid and is horizontal before the load P is applied. Bars (1) and (2) are both made from steel [E = 30,000 ksi] and both have a cross-sectional area of 1.5 in.². Assume lengths of a = 44 in., b = 60 in., c = 32 in., L₁= 75 in., and L₂ = 120 in. The normal stress in bars (1) and (2) must be limited to 60 ksi. Determine the maximum load P that may be applied to the rigid bar. LI a (1) B Rigid bar b L₂ (2) Darrow_forwarddo not shortcut and 4 decimal placesarrow_forward
- 1. A 16-cm square steel bearing plate lies between a 12-cm diameter wooden post and a concrete footing as shown below. Determine the maximum value of the axial load P if the stress in wood is limited to 300 MPa and that in concrete to 90 MPa. 12-cm Bearing Plate 16 cm 16 cm For problem 1arrow_forwardTask 2. The non-deformable, homogeneous ABCD board with a weight of G=10 kN is supported by three steel articulated bars BK, CH, DH and loaded with a horizontal force P=20 kN. Determine the value of the diameters of the bars, if the allowable tensile stress kr=10 kN/cm, a=1 m, b = 0.8 m. K H В P a |G A a Darrow_forwardA pin-connected structure is supported and loaded as shown. Member ABCD is rigid and is horizontal before the load P is applied. Bars (1) and (2) are both made from steel [E = 30,000 ksi] and both have a cross-sectional area of 1.5 in.². Assume lengths of a = 40 in., b = 64 in.. c = 24 in., L₁= 55 in, and L₂ = 100 in. The normal stress in bars (1) and (2) must be limited to 54 ksi. Determine the maximum load P that may be applied to the rigid bar. Answer: Praxa In (1) Rigid bar b ܕܐ kips (2) C Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Differences between Temporary Joining and Permanent Joining.; Author: Academic Gain Tutorials;https://www.youtube.com/watch?v=PTr8QZhgXyg;License: Standard Youtube License