Each of the four vertical links has an 8 × 36-mm uniform rectangular cross section, and each of the four pins has a 16-mm diameter. Determine the maximum value of the average normal stress in the links connecting (a) points B and D, (b) points C and E.
Fig. P1.7
(a)
The maximum value of average normal stress in the links connecting at point B and D.
Answer to Problem 7P
The maximum value of average normal stress in the links connecting at point B and D is
Explanation of Solution
Given information:
The size of rectangular cross section is
The diameter (d) of the each pin is
Calculation:
Sketch the free body diagram of link ABC as shown in Figure 1.
Here,
Refer to Figure 1.
Apply the moment equilibrium condition at the point C.
Refer to Figure 1.
Apply the moment equilibrium condition at the point B.
Calculate the net area of one link for tension as follows:
Here, b is the width of the rectangular cross section, h is the depth of the rectangular cross section, and
Substitute
Find the area of network for two parallel links as follows:
Find the average normal stress
Here,
Substitute
Thus, the maximum value of average normal stress in the links connecting at point B and D is
(b)
The maximum value of average normal stress in the links connecting at point C and E.
Answer to Problem 7P
The maximum value of average normal stress in the links connecting at point C and E is
Explanation of Solution
Calculation:
Calculate the net area of one link for tension as follows:
Substitute
Find the area of network for two parallel links as follows:
Find the average normal stress
Here,
Substitute
Thus, the maximum value of average normal stress in the links connecting at point C and E is
Want to see more full solutions like this?
Chapter 1 Solutions
Mechanics of Materials, 7th Edition
Additional Engineering Textbook Solutions
Engineering Mechanics: Dynamics (14th Edition)
Fundamentals of Aerodynamics
Heating Ventilating and Air Conditioning: Analysis and Design
DeGarmo's Materials and Processes in Manufacturing
Statics and Mechanics of Materials
Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
- 2. Knowing that link DE is 1/8 in. thick and 1 in. wide, determine the normal stress in the central portion of that link when (a) 0–0°, (b) 0=90°. 12 in. 2 in. 8 in. 60 lbarrow_forward5. The load P applied to a steel rod is distributed to a timber support by an annular washer. The diameter of the rod is 22 mm and the inner diameter of the washer is 25 mm, which is slightly larger than the diameter of the hole. Determine the smallest allowable outer diameter d of the washer, knowing that the axial normal stress in the steel rod is 35 MPa and the average bearing stress between the washer and the timber must not exceed 5 MPa. - 22 mmarrow_forward1.14 Two hydraulic cylinders are used to control the position of the robotic arm ABC. Knowing that the control rods attached at A and D each have a 20-mm diameter and happen to be parallel in the position shown, determine the average normal stress in (a) member AE, (b) member DG. 400 mm E - 300 mm- A Fig. P1.14 F G 150 mm 150 mm 200 mm B D 600 mm- 800 N Carrow_forward
- Two horizontal 5-kip forces are applied to pin B of the assembly shown. Knowing that a pin of 0.8-in. diameter is used at each connection,determine the maximum value of the average normal stress (a) in link AB, (b) in link BC.arrow_forwardPlease show full steps and explainarrow_forwardTwo gage marks are placed exactly 250 mm apart on a 12-mm-diameter aluminum rod with E = 73 GPa and an ultimate strength of 140 MPa. Knowing that the distance between the gage marks is 250.28 mm after a load is applied, determine the stress in the rodarrow_forward
- A cast-iron machine part is acted upon by the 3 kN-m couple shown. Know-ing that E= 165 GPa and neglecting the effect of fillets, determine (a) the maximum tensile and compressive stresses in the casting and (b) the radius of curvature of the castingarrow_forwardEach of the four vertical Ilinks has an 8 x 36-mm uniform rectangular cross section and each of the four pins has a 16-mm diameter. Take P= 19 kN. 0.4 m C 0.25 m 0.2 m B. P Determine the average bearing stress at Bin member ABC, knowing that this member has a 10 x 50-mm uniform rectangular cross section. MPa. The average bearing stress at Bin member ABC is.arrow_forwardPROBLEM 1.2 Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that d = 50 mm and dz = 30 mm, find the average normal stress at the midsection of (a) rod AB, (b) rod BC. 300 mm 40 kN 250 mm V30 KNarrow_forward
- Link BD consists of a single bar 30 mm wide and 12 mm thick. Knowing that each pin has a 10-mm diameter, determine the maximum value of the average normal stress in link BD if (a) θ =0°(b) θ =90°.arrow_forwardPROBLEM 1.3 3 in. 30 kips Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Determine the magnitude of the force P for which the tensile stress in rod AB is twice the magnitude of the compressive stress in rod BC. 30 kips 40 in PROBLEM 1.4 In Prob. 1.3, knowing that P = 40 kips, determine the average normal stress at the midsection of (a) rod AB, (b) rod BC.arrow_forwardKnowing that, for the plate shown, the allowable stress is 125 MPa, determine the maximum allowable value of P when (a) r=12 mm, (b) r= 18 mmarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY