Concept explainers
To determine that the given function is one-to-one and sketch the inverse of the function if it is one-to-one.
Yes, the given function is one-to-one.
Given : The sketch of the given function is:
Information: A function
A horizontal line test can be used to determine whether a function is one-to-one or not. If each horizontal line
A function
Interpretation: For the above graph, the graph does not intersect any horizontal line at more than one point. Hence, the function is one-to-one. The inverse of given function is sketched using the reflection of the function about the line
Graph:
Chapter 1 Solutions
PRECALCULUS:...COMMON CORE ED.-W/ACCESS
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning