
(a)
Interpretation:
Molarity of CuCl2 solution have to be calculated.
Concept Introduction:
Composition of a solution can be defined by expressing its concentration. The concentrations of solutions can be expressed in different ways, which are involved in the quantity of solute and the quantity of solution or solvent. Various methods are used to describe the concentration of the solution quantitatively. Some commonly used quantitative concentration terms are percent by mass, percent by volume, molarity, molality and mole fraction.
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution In expression,
Again
Molarity of CuCl2solution is 0.253 M.
Data given: Mass of CuCl2= 4.25 gm
Volume of CuCl2solution = 125 mL = 0.125 L
(b)
Interpretation:
Molarity of NaHCO3solution have to be calculated.
Concept Introduction:
Composition of a solution can be defined by expressing its concentration. The concentrations of solutions can be expressed in different ways, which are involved in the quantity of solute and the quantity of solution or solvent. Various methods are used to describe the concentration of the solution quantitatively. Some commonly used quantitative concentration terms are percent by mass, percent by volume, molarity, molality and mole fraction.
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution In expression,
Again
Molarity of NaHCO3solution is 0.106 M.
Data given: Mass of NaHCO3= 0.101 gm
Volume of NaHCO3solution = 11.3 mL = 0.0113 L
(c)
Interpretation:
Molarity of NaCl solution have to be calculated.
Concept Introduction:
Composition of a solution can be defined by expressing its concentration. The concentrations of solutions can be expressed in different ways, which are involved in the quantity of solute and the quantity of solution or solvent. Various methods are used to describe the concentration of the solution quantitatively. Some commonly used quantitative concentration terms are percent by mass, percent by volume, molarity, molality and mole fraction.
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution In expression,
Again
Molarity of Na2CO3solution is 0.434 M.
Data given: Mass of Na2CO3= 52.9 gm
Volume of Na2CO3solution = 1.15 L
(d)
Interpretation:
Molarity of KOH solution have to be calculated.
Concept Introduction:
Composition of a solution can be defined by expressing its concentration. The concentrations of solutions can be expressed in different ways, which are involved in the quantity of solute and the quantity of solution or solvent. Various methods are used to describe the concentration of the solution quantitatively. Some commonly used quantitative concentration terms are percent by mass, percent by volume, molarity, molality and mole fraction.
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution In expression,
Again
Molarity of KOH solution is 0.0017 M.
Data given: Mass of KOH = 0.14 mg = 0.00014 gm
Volume of KOH solution = 1.5 mL = 0.0015 L
Chapter 15 Solutions
World of Chemistry
- Is (CH3)3NHBr an acidic or basic salt? What happens when dissolved in aqueous solution? Doesn't it lose a Br-? Does it interact with the water? Please advise.arrow_forwardThree pure compounds are formed when 1.00 g samples of element x combine with, respectively, 0.472 g, 0.630 g, and 0.789 g of element z. The first compound has the formula x2Z3. find the empricial formula of the other two compoundsarrow_forwardDraw the product and the mechanism A. excess H*; 人 OH H*; B. C. D. excess OH ✓ OH H*; H₂O 1. LDA 2. H*arrow_forward
- In reactions whose kinetic equation is v = k[A]m, the rate coefficient k is always positive. Is this correct?arrow_forwardIf the concentration of A decreases exponentially with time, what is the rate equation? (A). -d[A] (B). dt d[A] = k[A] e-kt dtarrow_forwardGiven the first-order reaction: aA → products. State its kinetic equation.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





