(a)
Interpretation:
Structural formula of the organic product formed when propanal undergoes Tollen’s test has to be drawn.
Concept Introduction:
In
In organic chemistry, reduction reaction is referred to the number
Alcohols undergo
Aldehyde undergoes oxidation to give carboxylic acid as the product while ketone does not undergo oxidation reaction.
Tollen’s test:
This is also known as silver mirror test. The reagent that is used in Tollen’s test is silver nitrate and ammonia in water. Aldehyde reacts with Tollen’s reagent, where the silver ion is reduced to silver metal and the aldehyde is oxidized to carboxylic acid.
Ketone does not undergo Tollen’s test to deposit silver metal.
Benedict’s test:
This test is also similar to Tollen’s test. In this test,
(a)
Answer to Problem 15.78EP
The structure of organic product obtained is,
Explanation of Solution
Aldehydes undergo Tollen’s test. The product formed when aldehyde undergo oxidation is a carboxylic acid. The general oxidation reaction for aldehyde can be given as,
Given aldehyde is propanal and the structure can be given as shown below,
This on reaction with Tollen’s reagent gives carboxylic acid as the product. The structure of the organic product formed and the complete reaction can be given as shown below,
Propanoic acid is formed from propanal when it undergoes Tollen’s test.
The structure of the organic product formed is drawn.
(b)
Interpretation:
Structural formula of the organic product formed when 3-pentanone undergoes Tollen’s test has to be drawn.
Concept Introduction:
In organic chemistry, oxidation reaction is referred to the number
In organic chemistry, reduction reaction is referred to the number
Alcohols undergo oxidation reaction and reduction reaction. This depends upon the number of hydrogen atoms that is bonded to the alpha carbon atom. Primary and secondary alcohol undergoes oxidation reaction while tertiary alcohol does not undergo oxidation reaction. Primary alcohols undergo oxidation to give aldehyde and carboxylic acid as product. Secondary alcohol undergoes oxidation to give ketone as the product.
Aldehyde undergoes oxidation to give carboxylic acid as the product while ketone does not undergo oxidation reaction.
Tollen’s test:
This is also known as silver mirror test. The reagent that is used in Tollen’s test is silver nitrate and ammonia in water. Aldehyde reacts with Tollen’s reagent, where the silver ion is reduced to silver metal and the aldehyde is oxidized to carboxylic acid.
Ketone does not undergo Tollen’s test to deposit silver metal.
Benedict’s test:
This test is also similar to Tollen’s test. In this test,
(b)
Answer to Problem 15.78EP
3-pentanone does not undergo Tollen’s test.
Explanation of Solution
Aldehydes undergo Tollen’s test. The product formed when aldehyde undergo oxidation is a carboxylic acid. The general oxidation reaction for aldehyde can be given as,
Given compound is a ketone that is 3-pentanone and the structure can be given as shown below,
This on reaction with Tollen’s reagent does not give oxidized product. Therefore, no reaction takes place when 3-pentanone reacts with Tollen’s reagent.
3-pentanone does not react with Tollen’s reagent.
No reaction takes place when 3-pentanone undergoes Tollen’s test.
(c)
Interpretation:
Structural formula of the organic product formed when methylpropanal undergoes Benedict’s test has to be drawn.
Concept Introduction:
In organic chemistry, oxidation reaction is referred to the number
In organic chemistry, reduction reaction is referred to the number
Alcohols undergo oxidation reaction and reduction reaction. This depends upon the number of hydrogen atoms that is bonded to the alpha carbon atom. Primary and secondary alcohol undergoes oxidation reaction while tertiary alcohol does not undergo oxidation reaction. Primary alcohols undergo oxidation to give aldehyde and carboxylic acid as product. Secondary alcohol undergoes oxidation to give ketone as the product.
Aldehyde undergoes oxidation to give carboxylic acid as the product while ketone does not undergo oxidation reaction.
Tollen’s test:
This is also known as silver mirror test. The reagent that is used in Tollen’s test is silver nitrate and ammonia in water. Aldehyde reacts with Tollen’s reagent, where the silver ion is reduced to silver metal and the aldehyde is oxidized to carboxylic acid.
Ketone does not undergo Tollen’s test to deposit silver metal.
Benedict’s test:
This test is also similar to Tollen’s test. In this test,
(c)
Answer to Problem 15.78EP
The structure of organic product obtained is,
Explanation of Solution
Aldehydes undergo Benedicts’s test. The product formed when aldehyde undergo oxidation is a carboxylic acid. The general oxidation reaction for aldehyde can be given as,
Given aldehyde is methylpropanal and the structure can be given as shown below,
This on reaction with Tollen’s reagent gives carboxylic acid as the product. The structure of the organic product formed and the complete reaction can be given as shown below,
2-methylpropanoic acid is formed from methylpropanal when it undergoes Benedict’s test.
The structure of the organic product formed is drawn.
(d)
Interpretation:
Structural formula of the organic product formed when propanone undergoes Benedict’s test has to be drawn.
Concept Introduction:
In organic chemistry, oxidation reaction is referred to the number
In organic chemistry, reduction reaction is referred to the number
Alcohols undergo oxidation reaction and reduction reaction. This depends upon the number of hydrogen atoms that is bonded to the alpha carbon atom. Primary and secondary alcohol undergoes oxidation reaction while tertiary alcohol does not undergo oxidation reaction. Primary alcohols undergo oxidation to give aldehyde and carboxylic acid as product. Secondary alcohol undergoes oxidation to give ketone as the product.
Aldehyde undergoes oxidation to give carboxylic acid as the product while ketone does not undergo oxidation reaction.
Tollen’s test:
This is also known as silver mirror test. The reagent that is used in Tollen’s test is silver nitrate and ammonia in water. Aldehyde reacts with Tollen’s reagent, where the silver ion is reduced to silver metal and the aldehyde is oxidized to carboxylic acid.
Ketone does not undergo Tollen’s test to deposit silver metal.
Benedict’s test:
This test is also similar to Tollen’s test. In this test,
(d)
Answer to Problem 15.78EP
Propanone does not undergo Benedict’s test.
Explanation of Solution
Aldehydes undergo Benedict’s test. The product formed when aldehyde undergo oxidation is a carboxylic acid. The general oxidation reaction for aldehyde can be given as,
Given compound is a ketone. The name of ketone is propanone and the structure can be given as shown below,
This on reaction with Benedict’s reagent does not give oxidized product. Therefore, no reaction takes place when propanone undergoes Benedict’s test.
Propanone does not undergo Benedict’s test.
No reaction takes place when propanone undergoes Benedict’s test.
Want to see more full solutions like this?
Chapter 15 Solutions
General, Organic, and Biological Chemistry
- Can the iodine test distinguish between amylose and amylopectin? What would you look for?arrow_forwardDefine the following terms: a. reducing sugar b. alditol c. enediol d. acetal e. ketalarrow_forwardDefine the following terms briefly as they relate to the experiments Cite an example for each using the Fischer/Haworth projection formula a. Aldohexose b. Reducing Sugar c. Hemiacetalarrow_forward
- What is the iodine indicator test used for? Describe in detail how iodine works in a reaction and what results are producedarrow_forwardConsider a buffer solution of acetate. The volume is 500 ml, the concentration is 200 mM, and the pH is 5.0. a. How many total moles of acetate plus acetic acid are present in the solution? Express answer as x.y with one digit before and one after the decimal place. b. What is the ratio of acetate ions (Ac-) to acetic acid ions (HAc) in the buffer solution (pH 5.0) if the pka is 4.76? Express the answer as x.yz with one digit before and two after the decimal place. c. How many moles of acetate are present in the solution? Express your answer to one decimal place. d. How many moles of acetic acid are present in the solution? Express your answer to one decimal place.arrow_forwardMatch the qualitative test results to the sample identity in the table below. Give its structure and reaction profile matching rationale.arrow_forward
- Name at least two alternative chemical tests that can be performed to characterize functional groups/hydrocarbons in an unknown sample (aside from Nitration test, Bromine test, and basic oxidation reaction test.)arrow_forwardSucrose + H2O(negative control): Colorless to brown solution: Blue solution Conclusion for Iodine test A. amylose present B. amylose not present Conclusion for Benedict's test A. reducing sugars not present B. reducing sugars present Sucrose + HCl(potential hydrolysis): unchanged compared to sucrose+water: Conclusion for Iodine test A. more amylose present B. LESS amylose present C. NO change Conclusion for Benedict's test a. more reducing sugar present b. less reducing sugar present c. no change Did hydrolysis of sucrose occur in the presence of acid? A. Yes B. noarrow_forwardmake a schematic diagram of Iodine value determination using this data.arrow_forward
- A carbohydrate sample reacts positively with all test reagents except for Lugol's. The sample could possibly be?arrow_forwardBased on this video https://www.youtube.com/watch?v=rKng5-ij6kQ Provide a schematic diagram for the Iodine test methodologies in determining the presence of carbohydrates. Also, give the basic principle for the test.arrow_forwardThe aliquot method was used to obtain 8 mg of a drug with a prescription balance having a sensitivity of 6 mg. A weighing error of 5% was accepted. If 140 mg of the drug was weighed, added to 2.1 g of lactose, and 120 mg of the mixture used to provide the required quantity of drug, were the calculations correct or incorrect?arrow_forward