![Chemistry Principles And Practice](https://www.bartleby.com/isbn_cover_images/9781305295803/9781305295803_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
A weak acid in water produces a hydrogen ion and conjugate base. When weak acid dissolves in water, some acid molecules transfer proton to water.
In solution of weak acid, the actual concentration of the acid molecules becomes less because partial dissociation of acid has occurred and lost protons to form hydrogen ions.
The reaction is as follows:
The reaction is as follows:
The expression for
For value of
The fraction ionized is equal to ratio of concentration of ionized acid to analytical concentration multiplied by 100.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 15.67QE
The fraction of acid ionizedin
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Consider the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore concentration of
The equation for fraction of acid ionized of
Substitute
Hence, the fraction of acid ionized in
(b)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 15.67QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Consider the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore, concentration of
The equation for fraction of acid ionized in
Substitute
Hence, the fraction of acid ionized in
(c)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 15.67QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore, concentration of
The equation for fraction of acid ionized in
Substitute
Hence, the fraction of acid ionized in
(d)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 15.67QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore, concentration of
The equation for fraction of acid ionized in
Substitute
Hence, the fraction of acid ionized in
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry Principles And Practice
- Add curved arrows to the reactants in this reaction. A double-barbed curved arrow is used to represent the movement of a pair of electrons. Draw curved arrows. : 0: si H : OH :: H―0: Harrow_forwardConsider this step in a radical reaction: Br N O hv What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. O primary Otermination O initialization O electrophilic O none of the above × ☑arrow_forwardNonearrow_forward
- Can I get a drawing of what is happening with the orbitals (particularly the p orbital) on the O in the OH group? Is the p orbital on the O involved in the ring resonance? Why or why not?arrow_forward1) How many monochlorination products-including stereochemistry- are there for the molecule below:arrow_forwardSelect an amino acid that has and N-H or O-H bond in its R-group (you have 8 to choose from!). Draw at least two water molecules interacting with the R-group of the amino acid.arrow_forward
- Is this aromatic?arrow_forwardCHEM2323 E Tt PS CH03 Draw and name all monobromo derivatives of pentane, C5H11Br. Problem 3-33 Name: Draw structures for the following: (a) 2-Methylheptane (d) 2,4,4-Trimethylheptane Problem 3-35 (b) 4-Ethyl-2,2-dimethylhexane (e) 3,3-Diethyl-2,5-dimethylnonane (c) 4-Ethyl-3,4-dimethyloctane 2 (f) 4-Isopropyl-3-methylheptane KNIE>arrow_forwardProblem 3-42 Consider 2-methylbutane (isopentane). Sighting along the C2-C3 bond: (a) Draw a Newman projection of the most stable conformation. (b) Draw a Newman projection of the least stable conformation. Problem 3-44 Construct a qualitative potential-energy diagram for rotation about the C-C bond of 1,2-dibromoethane. Which conformation would you expect to be most stable? Label the anti and gauche conformations of 1,2- dibromoethane. Problem 3-45 Which conformation of 1,2-dibromoethane (Problem 3-44) would you expect to have the largest dipole moment? The observed dipole moment of 1,2-dibromoethane is µ = 1.0 D. What does this tell you about the actual conformation of the molecule?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079113/9781305079113_smallCoverImage.gif)