Concept explainers
Saturated humid air at 70 psia and 200°F is cooled to 100°F as it flows through a 3-in-diameter pipe with a velocity of 50 ft/s and at constant pressure. Calculate the rate at which liquid water is formed inside this pipe and the rate at which the air is cooled.
The rate at which liquid water is formed inside this pipe and the rate at which the air is cooled.
Answer to Problem 86P
The rate at which liquid water is formed inside this pipe is
Explanation of Solution
The amount of moisture in the air remains constant as it flows through the heating section as process involves no dehumidification or humidification.
Here, specific humidity at state 1 and 2 is
Express initial partial pressure.
Here, relative humidity at state 1 is
Express initial humidity ratio.
Here, pressure at state 1 is
Express initial enthalpy.
Here, specific heat at constant pressure is
Express specific volume at state 1.
Here, gas constant of air is
Express final partial pressure.
Here, relative humidity at state 2 is
Express final humidity ratio.
Here, pressure at state 2 is
Express final enthalpy.
Here, final specific enthalpy saturated vapor at temperature of
Express volume flow rate of the dry air at inlet.
Here, velocity at state 1 is
Express mass flow rate of air.
As the process is a steady flow and thus the mass flow rate of dry air remains constant during the entire process.
Here, the mass flow rate of air at inlet is
Express the rate at which liquid water is formed inside this pipe by using an water mass balance.
Here, mass flow rate of water at inlet and exit is
Express the rate at which the air is cooled by using an energy balance.
Here, the rate of total energy entering the system is
Conclusion:
Refer Table A-2E, “ideal-gas specific heats of various common gases”, and write the properties of air.
Refer Table A-4E, “saturated water-temperature table”, and write the saturation pressure and initial specific enthalpy saturated vapor at temperature of
Substitute
Substitute
Substitute
Substitute
Refer Table A-4E, “saturated water-temperature table”, and write the saturation pressure and final specific enthalpy saturated vapor at temperature of
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Hence, the rate at which liquid water is formed inside this pipe is
Refer Table A-4E, “saturated water-temperature table”, and write the enthalpy of saturation liquid at temperature of
Here, enthalpy of saturation liquid at temperature of
Substitute
Hence, the rate at which the air is cooled is
Want to see more full solutions like this?
Chapter 14 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Additional Engineering Textbook Solutions
Starting Out with C++ from Control Structures to Objects (9th Edition)
Database Concepts (8th Edition)
Electric Circuits. (11th Edition)
Fluid Mechanics: Fundamentals and Applications
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
- Q11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.arrow_forwardplease help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoaarrow_forwardSolve this problem and show all of the workarrow_forward
- Solve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forwardUniversity of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY