THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.7, Problem 48P
Consider a tennis match in cold weather where both players and spectators wear the same clothes. Which group of people will feel colder? Why?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When we take a shower with hot water, once we stop receiving water we experience a greater sensation of cold than if we had showered with cold water. Investigate and make an argument based on the concepts studied in physics (especially temperature and heat) and support your arguments with a development of equations or mathematical relationships that demonstrate your answer.
Explain the first law of thermodynamics? How is the first law different from the second law
of thermodynamics? Give an example of the first law of thermodynamic from your daily life.
What are the different mechanisms for transferring energy to or from a control volume?
please answer ASAP 2 hours left
Chapter 14 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A thermometer reading 18oF is brought into a room where the temperature is 70oF; 1 minute later the thermometer reading is 31oF. Determine the temperature reading as a function of time and, in particular, find the temperature reading 5 minutes after the thermometer is first brought into the room.arrow_forwardThe management of a sugar factory decided to use an empty store room to keep the excess sugar. In order to preserve the quality of the sugar, the humidity of the store room must be below than 30%. As an engineer, you have tested the condition of the room with a sling psychrometer and found out the wet-bulb temperature and dry-bulb temperatures at 1 atm are 20 and 30°C, respectively. Given the specific heat at constant pressure is 1.005 kJ/kg-°C. Existing store Empty store Pressure at 1 atm 25 and 15°C production Area A) Calculate the specific humidity and relative humidity of the empty store room. B) Estimate the enthalpy per unit mass and the masses of dry air as well as water vapor in the empty store room. C) In your opinion, is it possible to store the excess sugar in the empty store.as suggested by the factory management? Support your answer based on Thermodynamic Principles.arrow_forwardIn a double-glazed window, the panes of glass are separated by 1.0 cm and the space is filled with a gas with thermal conductivity 24 mW K−1 m−1. What is the rate of transfer of heat by conduction from the warm room (28 °C) to the cold exterior (−15 °C) through a window of area 1.0 m2? You may assume that one pane of glass is at the same temperature as the inside and the other as the outside. What power of heater is required to make good the loss of heat?arrow_forward
- A 25-kg iron ball with a temperature of 95°C is placed in a container with water whose mass is 40 kg, and whose temperature KJ KJ is 7°C. The specific heat of iron is 0.896 and that of water is 4.187 kg – K° kg – K° Express A (ambient temperature) as a function of u (object's temperature). A A = -0.1337 u + 5.7060 В A = - 0.1337 u + 19.7060 A = 22.4 u + 19.7060 A = 0.1337 u – 5.7060 none of the choicesarrow_forwardWater is being heated in a closed pan on top of a range while being stirred by a paddle wheel. During the process, 40 kJ of heat is added to the water and 5 kJ of heat is lost to the surrounding air. The paddle-wheel work amounts to 2 kJ. In the question that follows, select the answer that is closest to the true value. What is the change in internal energy of the water in units of kJ ?arrow_forwardA room contains moist air with a dry-bulb temperature of 250C and a wet-bulb temperature 210C. Determine the specific volume of the air. O 0.0139 O 0.0863 69 60.5arrow_forward
- What are the important modes of heat transfer for a person sitting quietly in a room? What if the person is sitting near a roaring fireplace?arrow_forwardAt a constant pressure, how does a volume of gas vary with respect to the absolute temperature?arrow_forwardAccording to newton’s law of cooling, the rate at which a substance cools in air is directly proportional to the difference between the temperatures of the substance and that of air. if the temperature of the air is 30°f and the substance cools from 100° to 70°f in 15 minutes, how long will it take to cool 80°f to 35°f?arrow_forward
- A substance containing 10 lb of moisture is placed in a sealed room, whose volume is 2000 cu ft and which when saturated can hold 0.015 lb of moisture per cubic foot. Initially the relative humidity of the air is 30 percent. If the substance to lose 80 percent of its moisture content? Assume the substance loses substance loses 4 lb of moisture in 1 hr, how much time is required for the sub- moisture at a rate that is proportional to its moisture content and to the difference between the moisture content of saturated air and the moisture content of the air.arrow_forwardNewton's Law of Cooling says that the rate at which a body cools is proportional to the differnce C in temperature between the body and the environment around it. The temperature f(t) of the body at time t in hours after being introduced into an environment having constant temperature T0 is f(t)=T0+Ce-kt, where C and k are constants.A pot of coffee with initial tempature of 100°C is set down in a room with a tempature of 20°C.The coffee cools to 60°C after 1 hour. A)Write an equation to model the data. B)Find the tempature after half an hour. C)How long will it take for the coffee to cool at 50°Carrow_forwardTwo friends, Jack and Jill, sit down to talk and enjoy a cup of coffee. When the coffee is served, Jack immediately adds a tablespoon of cream to his coffee. Jill, occupied with the discussion, waits 10 minutes before adding a tablespoon of cream, which has been kept at a constant temperature. The two friends then begin to drink their coffee. Who has the hotter coffee at that time? Assume that the cream is cooler than the air and justify your answer using Newton’s law of cooling. Please help solve this problem! Thank you!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License