THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Question
Chapter 14.7, Problem 84P
To determine
Sketch the psychrometric diagram; determine the dew-point and wet-bulb temperatures at the inlet, the required heat transfer rate and the rate of condensation of water vapor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An air-conditioning system operates at a total pressure of 1 atm and consists of a heating
section and a humidifier that supplies wet steam (saturated water vapor) at 100 degrees
celsius. Air enters the heating section at 10 degrees celsius and 70 percent relative humidity
at a rate of 35 m^3/min, and it leaves the humidifying section at 20 degree celcius and 60
percent relative humidity.
Heating
coils
Loooooooo
10°C
70%
35 m³/min
AIR
P = 1 atm
Sat. vapor
100°C
Humidifier
€
20°C
60%
a. Humidity ratio at inlet
b. Relative humidity at the exit
c. Humidity ratio at exit
d. Rate at which water is added to humidifying section
Required information
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to
return to this part.
An air-conditioning system operates at a total pressure of 1 atm and consists of a
heating section and a humidifier that supplies wet steam (saturated water vapor) at
100°C. Air enters the heating section at 10°C and 70 percent relative humidity at a rate
of 32 m /min, and it leaves the humidifying section at 20°C and 60 percent relative
humidity. Use data from the tables.
Sat. vapor
100°C
Heating
coils
Humidifier
10°C
Air
20°C
70%
60%
ymYmin
P=1 atm
Determine the temperature and relative humidity of air when leaves the heating section.
The temperature is
°C.
The relative humidity is
%.
Air Conditioning Thermo Fluid
Chapter 14 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- P=19 Moist air goes into air-conditioning unit at a degree-30 C and 70% relative humidity, and it is cooled to 20-degree C and 20% relative humidity at a constant pressure of 1.01325 bar. The mass flow rate of dry air is mda=63 kg/s The unit applies refrigerant R-134a as the cooling fluid that enters inside the tubes of the cooling coil at 3.6 bar with a quality of 0.2 and leaves as a saturated vapor at the same pressure of 3.6 bar. Use the psychometric chart to determine: a) Mass flow rate of condensed water in kg/s b) The heat transfer rate from the air to the cooling coil in kW (Use the psychometric chart) c) The mass flow rate of R-134a that is needed in kg/sarrow_forwardRead carefully. Please solve ellaborately and include the untis in every step, and write your solutions clearly and readable if your solution is in written form, Your work will be appreaciated much. Thank You! Atmospheric air from the inside of an automobile enters the evaporator section of the air conditioner at 1 atm, 27 C and 50 percent relative humidity. The air returns to the automobile at 10 C and 90 percent relative humidity. The passenger compartment has a volume of 2 m3 and 5 air changes per minute are required to maintain the inside of the automobile at the desired comfort level. Sketch the psychrometric diagram for the atmospheric air flowing through the air conditioning process. Determine the dew point and wet bulb temperatures at the inlet to the evaporator section, in 8 C. Answer the required heat transfer rate from the atmospheric air to the evaporator fluid, in kW. Answer the rate of condensation of water vapor in the evaporator section, in kg/min. Answerarrow_forwardProblem 2: An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and a humidifier that supplies wet steam (saturated water vapor) at 100 degrees celsius. Air enters the heating section at 10 degrees celsius and 70 percent relative humidity at a rate of 35 m^3/min, and it leaves the humidifying section at 20 degree celcius and 60 percent relative humidity. Heating coils Leeeeeeee 10°℃ 70% 35 m³/min AIR P = 1 atm Sat. vapor 100°C Humidifier 20°C 60% a. Humidity ratio at inlet b. Relative humidity at the exit c. Humidity ratio at exit d. Rate at which water is added to humidifying sectionarrow_forward
- I need this with perfect answer 143103 An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and an evaporative cooler. Air enters the heating section at 15°C and 55 percent relative humidity at a rate of 30 m3 /min, and it leaves the evaporative cooler at 25°C and 45 percent relatively humidity. Determine (a) the temperature and relative humidity of the air when it leaves the heating section, (b) the rate of heat transfer in the heating section, and (c) the rate of water added to air in the evaporative cooler.arrow_forwardMoist air at 32 degrees Cdb and relative humidity of 60% enter a refrigeration system with a flow rate of 90 kg/min. Saturated air at 15 degrees Cdb leaves the system. Calculate the heat and moisture removed in kW and kg/s respectively.arrow_forwardMoist air enters a duct at 10oC, 80% relative humidity, and a volumetric flow rate of 81m3/min. The air is heated as it flows through the duct and exists at 34oC. No moisture is added or removed. Draw the cycle on the attached chart and determine: a) The rate of heat transfer in KJ/s; b) The relative humidity at the exit.arrow_forward
- For summer air conditioner application of a room; The sensible heat gain of the room is 13kW, the latent heat gain is 3kW, and the design conditions are determined as 21°C relative humidity 55%. Outdoor air conditions are at 42 °C 35% relative humidity, and the relative humidity of the air passing through the cooling coil at the exit from the coil will be 95%. Since the amount of air blown into the environment is 5000m^3/h, the return air is 700 m^3/h: a- Show the event in the psychometric diagram according to the data of the air conditioning application. b-Find the dry bulb temperature of the air at the outlet of the cooling coil. c-Calculate the amount of air that is bypassed and not by-passed from the coil B Mahalarrow_forwardplease answer do not image formatarrow_forwardwhat is the relationship and formula of relative humidity and temperature?arrow_forward
- A space to be conditioned has a sensible heat load of 80 kw and a latent heat load of 20 kw and is to be maintained at 20°C and 50% relative humidity. Outside air is at 35°C and 60% RH. The conditioned air will enter the space at 15°C. If 40% of the supply air is fresh and the rest is recirculated, the refrigeration capacity of the system is nearest to what value? 430 kw 455 kw 428 kw Ⓒ333 kwarrow_forwardAn air handler supplies 2.36 m3 /sec at a temperature of 12°C. The air handler was designed for 0.5 m3 /sec of outside air at 32oC DB and 26°C WB. The remaining return air from the space is at 25°C DB and 55% relative humidity. What are the entering conditions of the air into the coil, in DB and WB? Air pressure is 101.325 kPaarrow_forward1. In the process of air conditioning in a humidifier, the air at a dry bulb temperature of 20 °C and 25% RH increases its RH to 40%. Determine the amount of moisture added in the humidifier per kg of dry air. = (kg water/kg air). 2. The air has a dry bulb temperature of 34 °C and a wet bulb temperature of 22°C. The liquid is heated in a heater so that the dry bulb temperature increases to 80 °C. Then the air is passed through the corn kernels to dry. The air coming out of the corn kernels is at bulb temperature. dry 55 °C Then this air is passed to the dehumidifier to reduce its RH to 10%. Draw the course of the air change process on a psychrometric diagram. The rate of air flow through the corn kernels and dehumidifier is 4.0 m/s and the cross-sectional diameter of the pile is 0.7 m. a) Determine the amount of water content lost from the pile of corn kernels (in grams of water/second) b) Determine the amount of water content lost from the air when passing through the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY