
Air enters a 40-cm-diameter cooling section at 1 atm, 32°C, and 70 percent relative humidity at 120 m/min. The air is cooled by passing it over a cooling coil through which cold water flows. The water experiences a temperature rise of 6°C. The air leaves the cooling section saturated at 20°C. Determine (a) the rate of heat transfer, (b) the mass flow rate of the water, and (c) the exit velocity of the airstream.
FIGURE P14–79
(a)

The rate of heat transfer.
Answer to Problem 79P
The rate of heat transfer is
Explanation of Solution
Express the dew point temperature of the incoming air at a temperature of
Here, the saturation pressure at temperature of
Express initial volume rate of air.
Here, initial volume and area is
Express the mass flow rate of air at inlet.
Here, initial specific volume is
As the process is a steady flow and thus the mass flow rate of dry air remains constant during the entire process.
Here, mass flow rate of dry air at exit is
Express water mass balance to the combined cooling to obtain the mass flow rate of water.
Here, mass flow rate of water at inlet and exit is
Express the cooling rate when the condensate leaves the system by applying an energy balance on the humidifying section.
Here, rate of heat rejected or cooling rate when the condensate leaves the system is
Conclusion:
Refer Table A-4, “saturated water-temperature table”, and write saturation pressure at temperature of
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y is temperature and saturation pressure respectively.
Show the saturation pressure corresponding to temperature as in Table (1).
Temperature |
Saturation pressure |
30 | 4.2469 |
32 | |
35 | 5.6291 |
Substitute
Thus, the saturation pressure at temperature of
Substitute
Here, saturation temperature at pressure of
Refer Table A-5 , “saturated water-pressure table”, and write saturation temperature at pressure of
Show the saturation temperature corresponding to pressure as in Table (2).
Pressure |
Saturation temperature |
3 | 24.08 |
3.33 | |
4 | 28.96 |
Use excels and tabulates the values from Table (2) in Equation (VI) to get,
Substitute
Refer Figure A-31, “psychometric chart at
Refer Figure A-31, “psychometric chart at
Here, final specific volume is
Refer Table A-4, “saturated water-temperature table”, and write the enthalpy of water at temperature of
Here, specific enthalpy saturation liquid at temperature of
Perform unit conversion of diameter from
Substitute
Substitute
Substitute
Substitute
Hence, the rate of heat transfer is
(b)

The mass flow rate of the water.
Answer to Problem 79P
The mass flow rate of the water is
Explanation of Solution
Express the mass flow rate of the water.
Here, mass flow rate of the water is
Conclusion:
Refer Table A-2, “ideal-gas specific heats of various common gases”, and write specific heat at constant pressure of water.
Substitute
Hence, the mass flow rate of the water is
c)

The exit velocity of the airstream.
Answer to Problem 79P
The exit velocity of the airstream is
Explanation of Solution
Express the exit velocity of the airstream.
Conclusion:
Substitute
Hence, the exit velocity of the airstream is
Want to see more full solutions like this?
Chapter 14 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- subject: combustion please include complete solution, no rounding off, with diagram/explanation etc. In a joule cycle, intake of the compressor is 40,000 cfm at 0.3 psig and 90 deg F. The compression ratio is 6.0 and the inlet temperature at the turbine portion is 1900R while at the exit, it is 15 psi. Calculate for the back work ratio in percent.arrow_forwardsubject: combustion please include complete solution, no rounding off, with diagram/explanation etc. A gasoline engine, utilizing cold air, recorded a work of 431 BTU/lb at a maximum temperature of 3,273 K and 1112 deg F temperature at the beginning of constant volume heat addition. What is the compression ratio?arrow_forwardsubject: combustion please do step by step solution and no rounding off, complete solution with diagram/explanation if needed etc. thank you! Air enters the compressor at 101,320 Pascals, 305.15K, and leaves at a pressure of 0.808MPa. The air is heated to 990.15K in the combustion chamber. For a net output of 2,125,000 Watts, find the rate of flow of air per second.arrow_forward
- The link lengths and the value of 2 and offset for some fourbar crank-slide linkages are defined in Table 1. The linkage configuration and terminology are shown in Figure 1. For the rows assigned, find (a) all possible solutions for angle & and slider position d by vector loop method. (b) the transmission angle corresponding to angle 03. (Hint: Treat the vector R4 as virtual rocker) Show your work in details: vector loop, vector equations, solution procedure. Table 1 Row Link 2 Link 3 Offset Ө a 1.4 4 1 45° b 3 8 2 -30° C 5 20 -5 225° 03 slider axis B X offset Link 2 A R3 Link 3 R4 04 R2 02 R1 d Figure 1. Xarrow_forward4. Two links made of heat treated 6061 aluminum (Sy = 276 MPa, Sys = 160 MPa) are pinned together using a steel dowel pin (Sy = 1398 MPa, Sys = 806 MPa) as shown below. The links are to support a load P with a factor of safety of at least 2.0. Determine if the link will fail first by tearout, direct shear of the pin, bearing stress on the link, or tensile stress at section AA. (Hint: find the load P for each case and choose the case that gives the smallest load.) P 8 mm P 8 mm ¡+A 3 mm →A 10 mm Parrow_forward1. For a feature other than a sphere, circularity is where: A. The axis is a straight line B. The modifier is specified with a size dimension C. All points of the surface intersected by any plane perpendicular to an axis or spine (curved line) are equidistant from that axis or spine D. All points of the surface intersected by any plane passing through a common center are equidistant from that center 2. What type of variation is limited by a circularity toler- ance zone? A. Ovality B. Tapering C. Bending D. Warping 3. How does the Rule #1 boundary affect the application of a circularity tolerance? A. The modifier must be used. B. The feature control frame must be placed next to the size dimension. C. The circularity tolerance value must be less than the limits of size tolerance. D. Circularity cannot be applied where a Rule #1 boundary exists. 4. A circularity tolerance may use a modifier. A. Ø B. F C. M D. ℗ 5. A real-world application for a circularity tolerance is: A. Assembly (i.e.,…arrow_forward
- 3. A steel bar is pinned to a vertical support column by a 10 mm diameter hardened dowel pin, Figure 1. For P = 7500 N, find: a. the shear stress in the pin, b. the direct bearing stress on the hole in the bar, c. the minimum value of d to prevent tearout failure if the steel bar has a shear strength of 175 MPa. support column pin bar thickness of bar = 8 mm h d 150 mmarrow_forwardA press that delivers 115 strokes per minute, each stroke providing a force of 7826 N throughout a distance of 18 mm. The press efficiency is 90% and is driven by a 1749-rpm motor. Determine average torque that must be provided by the motor in the units of N-m.arrow_forward·3) find the force (P) for the figures (1) and (2) 15cm 10cm 15 h=10mm h2=6mm // Call = 90 N/2 P Agate Fig (i) Ans: 1)P=112614N 2) P=1956.5 N 25cm 25 cm الفترة أو الحجم تمر بالتي عثر اكو تورشن (ک Fig (2) h₁ = 10mm 42=6mm Cmarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





