Chemistry 2012 Student Edition (hard Cover) Grade 11
12th Edition
ISBN: 9780132525763
Author: Prentice Hall
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 90A
Interpretation Introduction
Interpretation − To explain how a vacuum can prevent heat transfer.
Introduction-
Heat transfer can take place in three ways:
- Conduction is when heat is transferred from a hotter body to a colder body without any movement of particles.
- Convection: Heat transfer takes place from high temperature to low temperature by the movement of particles
- Radiation: Heat transfer takes place through
electromagnetic waves.
Expert Solution & Answer
Explanation of Solution
When the vacuum is created between the walls of the tank, there is no medium present for the traveling of particles. Hence, the vacuum prevents heat transfer by convection.
Chapter 14 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
Ch. 14.1 - Prob. 1LCCh. 14.1 - Prob. 2LCCh. 14.1 - Prob. 3LCCh. 14.1 - Prob. 4LCCh. 14.1 - Prob. 5LCCh. 14.1 - Prob. 6LCCh. 14.1 - Prob. 7LCCh. 14.1 - Prob. 8LCCh. 14.2 - Prob. 9SPCh. 14.2 - Prob. 10SP
Ch. 14.2 - Prob. 11SPCh. 14.2 - Prob. 12SPCh. 14.2 - Prob. 13SPCh. 14.2 - Prob. 14SPCh. 14.2 - Prob. 15SPCh. 14.2 - Prob. 16SPCh. 14.2 - Prob. 17LCCh. 14.2 - Prob. 18LCCh. 14.2 - Prob. 19LCCh. 14.2 - Prob. 20LCCh. 14.2 - Prob. 21LCCh. 14.2 - Prob. 22LCCh. 14.2 - Prob. 23LCCh. 14.2 - Prob. 24LCCh. 14.2 - Prob. 25LCCh. 14.3 - Prob. 26SPCh. 14.3 - Prob. 27SPCh. 14.3 - Prob. 28SPCh. 14.3 - Prob. 29SPCh. 14.3 - Prob. 30LCCh. 14.3 - Prob. 31LCCh. 14.3 - Prob. 32LCCh. 14.3 - Prob. 33LCCh. 14.3 - Prob. 34LCCh. 14.3 - Prob. 35LCCh. 14.3 - Prob. 36LCCh. 14.4 - Prob. 37SPCh. 14.4 - Prob. 38SPCh. 14.4 - Prob. 39SPCh. 14.4 - Prob. 40LCCh. 14.4 - Prob. 41LCCh. 14.4 - Prob. 42LCCh. 14.4 - Prob. 43LCCh. 14.4 - Prob. 44LCCh. 14.4 - Prob. 45LCCh. 14.4 - Prob. 46LCCh. 14 - Prob. 47ACh. 14 - Prob. 48ACh. 14 - Prob. 49ACh. 14 - Prob. 50ACh. 14 - Prob. 51ACh. 14 - Prob. 52ACh. 14 - Prob. 53ACh. 14 - Prob. 54ACh. 14 - Prob. 55ACh. 14 - Prob. 56ACh. 14 - Prob. 57ACh. 14 - Prob. 58ACh. 14 - Prob. 59ACh. 14 - Prob. 60ACh. 14 - Prob. 61ACh. 14 - Prob. 62ACh. 14 - Prob. 63ACh. 14 - Prob. 64ACh. 14 - Prob. 65ACh. 14 - Prob. 66ACh. 14 - Prob. 67ACh. 14 - Prob. 68ACh. 14 - Prob. 69ACh. 14 - Prob. 70ACh. 14 - Prob. 71ACh. 14 - Prob. 72ACh. 14 - Prob. 73ACh. 14 - Prob. 74ACh. 14 - Prob. 75ACh. 14 - Prob. 76ACh. 14 - Prob. 77ACh. 14 - Prob. 78ACh. 14 - Prob. 79ACh. 14 - Prob. 80ACh. 14 - Prob. 81ACh. 14 - Prob. 82ACh. 14 - Prob. 83ACh. 14 - Prob. 84ACh. 14 - Prob. 85ACh. 14 - Prob. 86ACh. 14 - Prob. 87ACh. 14 - Prob. 88ACh. 14 - Prob. 89ACh. 14 - Prob. 90ACh. 14 - Prob. 91ACh. 14 - Prob. 92ACh. 14 - Prob. 93ACh. 14 - Prob. 94ACh. 14 - Prob. 95ACh. 14 - Prob. 96ACh. 14 - Prob. 97ACh. 14 - Prob. 98ACh. 14 - Prob. 99ACh. 14 - Prob. 100ACh. 14 - Prob. 101ACh. 14 - Prob. 102ACh. 14 - Prob. 106ACh. 14 - Prob. 107ACh. 14 - Prob. 108ACh. 14 - Prob. 109ACh. 14 - Prob. 110ACh. 14 - Prob. 111ACh. 14 - Prob. 112ACh. 14 - Prob. 113ACh. 14 - Prob. 114ACh. 14 - Prob. 115ACh. 14 - Prob. 116ACh. 14 - Prob. 117ACh. 14 - Prob. 118ACh. 14 - Prob. 119ACh. 14 - Prob. 120ACh. 14 - Prob. 121ACh. 14 - Prob. 122ACh. 14 - Prob. 123ACh. 14 - Prob. 1STPCh. 14 - Prob. 2STPCh. 14 - Prob. 3STPCh. 14 - Prob. 4STPCh. 14 - Prob. 5STPCh. 14 - Prob. 6STPCh. 14 - Prob. 7STPCh. 14 - Prob. 8STPCh. 14 - Prob. 9STPCh. 14 - Prob. 10STPCh. 14 - Prob. 11STPCh. 14 - Prob. 12STP
Knowledge Booster
Similar questions
- Draw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl C O Substitution will not occur at a significant rate. Explanation Check + O-CH3 Х Click and drag to start drawing a structure.arrow_forward✓ aw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. C Cl HO–CH O Substitution will not occur at a significant rate. Explanation Check -3 ☐ : + D Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Cearrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardDetermine whether the following reaction is an example of a nucleophilic substitution reaction: Br OH HO 2 -- Molecule A Molecule B + Br 义 ollo 18 Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. Which of the reactants is referred to as the nucleophile in this reaction? Which of the reactants is referred to as the organic substrate in this reaction? Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. ◇ Yes O No O Molecule A Molecule B Molecule A Molecule B टेarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Show work..don't give Ai generated solutionarrow_forwardPheromone G of the maize stalk borer, chilo partelus, can be synthesized based on the partial scheme shown below. Complete the scheme by identifying the structures of the intermediate compounds A, B, C, D, E, F and pheromone G. Indicate stereochemistry where relevantarrow_forwardQ8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor. одarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY