Interpretation: The molar mass of the gas should be calculated if it effuses four times as fast as oxygen gas.
Concept Introduction: According to Graham’s law of effusion, the rate of effusion of any gas is always inversely proportional to the square root of the mass of gaseous particles. The mathematical expression for this law is:
Answer to Problem 87A
The molar mass of the unknown gas is
Explanation of Solution
Gases can diffuse and effuse due to their high kinetic energy. The rate of effusion of gases is directly proportional to their temperature of it and also depends on the molar mass of the gases.
Molar mass of oxygen gas =
Thus the molar mass of the unknown gas X must be:
As the molar mass of the gas increases, the rate of effusion decreases.
Chapter 14 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- Can the target compound be efficiently synthesized in good yield from the substituted benzene of the starting material? If yes, draw the synthesis. Include all steps and all reactants.arrow_forwardWhat are the major products of this organic reaction? Please include all steps and explanations so that I can understand why. If there will be no significant reaction, explain why.arrow_forwardDon't used Ai solutionarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardWhat are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forwardCan the following molecule be made in good yield from no more than two reactants, by moderately heating the reactants? If yes, draw the reactant or reactants. If no, then the product can't be made in one step.arrow_forward
- using dimensional analysis convert 15.28 lb/gallon to mg/mLarrow_forwardusing dimensional analysis convert 0.00685 km to micrometersarrow_forwardWhat are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY