Chemistry: Principles and Reactions
8th Edition
ISBN: 9781305079373
Author: William L. Masterton, Cecile N. Hurley
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 72QAP
Four grams of a monoprotic weak acid are dissolved in water to make 250.0 mL of solution with a pH of 2.56. The solution is divided into two equal parts, A and B. Solution A is titrated with strong base to its equivalence point. Solution B is added to solution A after solution A is neutralized. The pH of the resulting solution is 4.26. What is the molar mass of the acid?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Chemistry: Principles and Reactions
Ch. 14 - Write a net ionic equation for the reaction...Ch. 14 - Write a net ionic equation for the reaction...Ch. 14 - Write a balanced net ionic equation for the...Ch. 14 - Write a balanced net ionic equation for the...Ch. 14 - Calculate K for the reactions in Question 1.Ch. 14 - Calculate K for the reactions in Question 2.Ch. 14 - Prob. 7QAPCh. 14 - Calculate K for the reactions in Question 4.Ch. 14 - Calculate [H+] and pH in a solution in which...Ch. 14 - Calculate [OH-] and pH in a solution in which the...
Ch. 14 - A buffer is prepared by dissolving 0.0250 mol of...Ch. 14 - A buffer is prepared by dissolving 0.062 mol of...Ch. 14 - A buffer solution is prepared by adding 15.00 g of...Ch. 14 - A buffer solution is prepared by adding 5.50 g of...Ch. 14 - A solution with a pH of 9.22 is prepared by adding...Ch. 14 - An aqueous solution of 0.057 M weak acid, HX, has...Ch. 14 - Which of the following would form a buffer if...Ch. 14 - Which of the following would form a buffer if...Ch. 14 - Calculate the pH of a solution prepared by mixing...Ch. 14 - Calculate the pH of a solution prepared by mixing...Ch. 14 - Calculate the pH of a solution prepared by mixing...Ch. 14 - Calculate the pH of a solution prepared by mixing...Ch. 14 - Consider the weak acids in Table 13.2. Which...Ch. 14 - Prob. 24QAPCh. 14 - A sodium hydrogen carbonate-sodium carbonate...Ch. 14 - You want to make a buffer with a pH of 10.00 from...Ch. 14 - Prob. 27QAPCh. 14 - The buffer capacity indicates how much OH- or H+...Ch. 14 - A buffer is made up of 0.300 L each of 0.500 M...Ch. 14 - A buffer is made up of 239 mL of 0.187 M potassium...Ch. 14 - Enough water is added to the buffer in Question 29...Ch. 14 - Enough water is added to the buffer in Question 30...Ch. 14 - A buffer is prepared in which the ratio [ H2PO4...Ch. 14 - A buffer is prepared using the butyric...Ch. 14 - Blood is buffered mainly by the HCO3 H2CO3 buffer...Ch. 14 - There is a buffer system in blood H2PO4 HPO42 that...Ch. 14 - Given three acid-base indicators—methyl orange...Ch. 14 - Given the acid-base indicators in Question 37,...Ch. 14 - Metacresol purple is an indicator that changes...Ch. 14 - Thymolphthalein is an indicator that changes from...Ch. 14 - When 25.00 mL of HNO3 are titrated with Sr(OH)2,...Ch. 14 - A solution of KOH has a pH of 13.29. It requires...Ch. 14 - A solution consisting of 25.00 g NH4Cl in 178 mL...Ch. 14 - A 50.0-mL sample of NaHSO3 is titrated with 22.94...Ch. 14 - A sample of 0.220 M triethylamine, (CH3CH2)3 N, is...Ch. 14 - A 35.00-mL sample of 0.487 M KBrO is titrated with...Ch. 14 - A 0.4000 M solution of nitric acid is used to...Ch. 14 - A 0.2481 M solution of KOH is used to titrate...Ch. 14 - Consider the titration of butyric acid (HBut) with...Ch. 14 - Morphine, C17H19O3N, is a weak base (K b =7.4107)....Ch. 14 - Consider a 10.0% (by mass) solution of...Ch. 14 - A solution is prepared by dissolving 0.350 g of...Ch. 14 - Prob. 53QAPCh. 14 - Ammonia gas is bubbled into 275 mL of water to...Ch. 14 - For an aqueous solution of acetic acid to be...Ch. 14 - Prob. 56QAPCh. 14 - Prob. 57QAPCh. 14 - Water is accidentally added to 350.00 mL of a...Ch. 14 - A solution of an unknown weak base...Ch. 14 - Consider an aqueous solution of HF. The molar heat...Ch. 14 - Each symbol in the box below represents a mole of...Ch. 14 - Use the same symbols as in Question 61 ( = anion,...Ch. 14 - The following is the titration curve for the...Ch. 14 - Prob. 64QAPCh. 14 - Follow the directions of Question 64. Consider two...Ch. 14 - Prob. 66QAPCh. 14 - Indicate whether each of the following statements...Ch. 14 - Prob. 68QAPCh. 14 - Consider the following titration curves. The...Ch. 14 - Consider the titration of HF (K a=6.7104) with...Ch. 14 - The species called glacial acetic acid is 98%...Ch. 14 - Four grams of a monoprotic weak acid are dissolved...Ch. 14 - Prob. 73QAPCh. 14 - Fifty cm3 of 1.000 M nitrous acid is titrated with...Ch. 14 - A diprotic acid, H2B(MM=126g/moL), is determined...Ch. 14 - Prob. 76QAPCh. 14 - Two students were asked to determine the Kb of an...Ch. 14 - How many grams of NaOH must be added to 1.00 L of...Ch. 14 - How many grams of NaF must be added to 70.00 mL of...Ch. 14 - Prob. 80QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A quantity of 0.15 M hydrochloric acid is added to a solution containing 0.10 mol of sodium acetate. Some of the sodium acetate is converted to acetic acid, resulting in a final volume of 650 mL of solution. The pH of the final solution is 4.56. a What is the molar concentration of the acetic acid? b How many milliliters of hydrochloric acid were added to the original solution? c What was the original concentration of the sodium acetate?arrow_forwardTwo samples of 1.00 M HCl of equivalent volumes are prepared. One sample is titrated to the equivalence point with a 1.00 M solution of sodium hydroxide, while the other sample is titrated to the equivalence point with a 1.00 M solution of calcium hydroxide. a Compare the volumes of sodium hydroxide and calcium hydroxide required to reach the equivalence point for each titration. b Determine the pH of each solution halfway to the equivalence point. c Determine the pH of each solution at the equivalence point.arrow_forwardPhenol, C6H5OH, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in enough water to make 125 mL of solution. The resulting solution is titrated with 0.123 M NaOH. C6H5OH(aq) + OH(aq) C6H5O(aq) + H2O() (a) What is the pH of the original solution of phenol? (b) What are the concentrations of all of the following ions at the equivalence point: Na+, H3O+, OH, and C6H5O? (c) What is the pH of the solution at the equivalence point?arrow_forward
- Follow the directions of Question 64. Consider two beakers: Beaker A has a weak acid(K a=1105). Beaker B has HCI. The volume and molarity of each acid in the beakers are the same. Both acids are to be titrated with a 0.1 M solution of NaOH. (a) Before titration starts (at zero time), the pH of the solution in Beaker A is the pH of the solution in Beaker B. (b) At half-neutralization (halfway to the equivalence point), the pH of the solution in Beaker A the pH of the solution in Beaker B. (c) When each solution has reached its equivalence point, the pH of the solution in Beaker A the pH of the solution in Beaker B. (d) At the equivalence point, the volume of NaOH used to titrate HCI in Beaker B the volume of NaOH used to titrate the weak acid in Beaker A.arrow_forwardExplain how to choose the appropriate acid-base indicator for the titration of a weak base with a strong acid.arrow_forwardYou are given the following acidbase titration data, where each point on the graph represents the pH after adding a given volume of titrant (the substance being added during the titration). a What substance is being titrated, a strong acid, strong base, weak acid, or weak base? b What is the pH at the equivalence point of the tiration? c What indicator might you use to perform this titration? Explain.arrow_forward
- Another way to treat data from a pH titration is to graph the absolute value of the change in pH per change in milliliters added versus milliliters added (pH/mL versus mL added). Make this graph using your results from Exercise 61. What advantage might this method have over the traditional method for treating titration data?arrow_forwardA bottle of concentrated hydroiodic acid is 57% HI by weight and has a density of 1.70 g/mL. A solution of this strong and corrosive acid is made by adding exactly 10.0 mL to some water and diluting to 250.0 mL. If the information on the label is correct, what volume of 0.988 M NaOH is needed to neutralize the HI solution? Suggest an indicator for the titration.arrow_forwardA student intends to titrate a solution of a weak monoprotic acid with a sodium hydroxide solution but reverses the two solutions and places the weak acid solution in the buret. After 23.75 mL of the weak acid solution has been added to 50.0 mL of the 0.100 M NaOH solution, the pH of the resulting solution is 10.50. Calculate the original concentration of the solution of weak acid.arrow_forward
- A solution of weak base is titrated to the equivalence point with a strong acid. Which one of the following statements is most likely to be correct? a The pH of the solution at the equivalence point is 7.0. b The pH of the solution is greater than 13.0. c The pH of the solution is less than 2.0. d The pH of the solution is between 2.0 and 7.0. e The pH of the solution is between 7.0 and 13.0. The reason that best supports my choosing the answer above is a Whenever a solution is titrated with a strong acid, the solution will be very acidic. b Because the solution contains a weak base and the acid (titrant) is used up at the equivalence point, the solution will be basic. c Because the solution contains the conjugate acid of the weak base at the equivalence point, the solution will be acidic.arrow_forwardSulfanilic acid (NH2C6H4SO3H) is used in manufacturing dyes. It ionizes in water according to the equilibrium equation NH2C6H4SO3H(aq)+H2O(l)NH2C6H4SO3(aq)+H3O+(aq)Ka=5.9104 A buffer is prepared by dissolving 0.20 mol of sulfanilicacid and 0.13 mol of sodium sulfanilate (NaNH2C6H4SO3) in water and diluting to 1.00 L. Compute the pH of the solution. Suppose 0.040 mol of HCl is added to the buffer.Calculate the pH of the solution that results.arrow_forwardA solution with a pH of 9.22 is prepared by adding water to 0.413 mol of KX to make 2.00 L of solution. What is the pH of the solution after 0.368 mol of HX is added?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY