Chemistry: Principles and Reactions
8th Edition
ISBN: 9781305079373
Author: William L. Masterton, Cecile N. Hurley
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 18QAP
Which of the following would form a buffer if added to 295 mL of 0.380 M HCl?
(a) 0.100 mol of NH4Cl(b) 0.033 mol of KF
(c) 0.167 mol of Sr(OH)2(d) 0.279 mol of KNO2
(e) 0.112 mol of KClO
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the pH change that results when 11 mL of 5.1 M NaOH is added to 796 mL of each the following solutions. (See the Acid-Base Table.)
(a) pure water (b) 0.10 M NH4Cl (c) 0.10 M NH3 (d) a solution that is 0.10 M in each NH4+ and NH3
Calculate the pH change that results when 11 mL of 5.1 M NaOH is added to 790. mL of each the following solutions. Use the Acid-Base Table.
(a) pure water
4.0 5.84
(b) 0.10 M NH4CI
4.0 5.43
(c) 0.10 M NH3
4.0✔
X
(d) a solution that is 0.10 M in each NH4+ and NH3
4.0✔
Calculate the pH change that results when 12 mL of 5.3 M NaOH is added to 768 mL of each the following solutions. (See the Acid-Base Table attached.)
(a) pure water (b) 0.10 M NH4Cl (c) 0.10 M NH3(d) a solution that is 0.10 M in each NH4+ and NH3
Chapter 14 Solutions
Chemistry: Principles and Reactions
Ch. 14 - Write a net ionic equation for the reaction...Ch. 14 - Write a net ionic equation for the reaction...Ch. 14 - Write a balanced net ionic equation for the...Ch. 14 - Write a balanced net ionic equation for the...Ch. 14 - Calculate K for the reactions in Question 1.Ch. 14 - Calculate K for the reactions in Question 2.Ch. 14 - Prob. 7QAPCh. 14 - Calculate K for the reactions in Question 4.Ch. 14 - Calculate [H+] and pH in a solution in which...Ch. 14 - Calculate [OH-] and pH in a solution in which the...
Ch. 14 - A buffer is prepared by dissolving 0.0250 mol of...Ch. 14 - A buffer is prepared by dissolving 0.062 mol of...Ch. 14 - A buffer solution is prepared by adding 15.00 g of...Ch. 14 - A buffer solution is prepared by adding 5.50 g of...Ch. 14 - A solution with a pH of 9.22 is prepared by adding...Ch. 14 - An aqueous solution of 0.057 M weak acid, HX, has...Ch. 14 - Which of the following would form a buffer if...Ch. 14 - Which of the following would form a buffer if...Ch. 14 - Calculate the pH of a solution prepared by mixing...Ch. 14 - Calculate the pH of a solution prepared by mixing...Ch. 14 - Calculate the pH of a solution prepared by mixing...Ch. 14 - Calculate the pH of a solution prepared by mixing...Ch. 14 - Consider the weak acids in Table 13.2. Which...Ch. 14 - Prob. 24QAPCh. 14 - A sodium hydrogen carbonate-sodium carbonate...Ch. 14 - You want to make a buffer with a pH of 10.00 from...Ch. 14 - Prob. 27QAPCh. 14 - The buffer capacity indicates how much OH- or H+...Ch. 14 - A buffer is made up of 0.300 L each of 0.500 M...Ch. 14 - A buffer is made up of 239 mL of 0.187 M potassium...Ch. 14 - Enough water is added to the buffer in Question 29...Ch. 14 - Enough water is added to the buffer in Question 30...Ch. 14 - A buffer is prepared in which the ratio [ H2PO4...Ch. 14 - A buffer is prepared using the butyric...Ch. 14 - Blood is buffered mainly by the HCO3 H2CO3 buffer...Ch. 14 - There is a buffer system in blood H2PO4 HPO42 that...Ch. 14 - Given three acid-base indicators—methyl orange...Ch. 14 - Given the acid-base indicators in Question 37,...Ch. 14 - Metacresol purple is an indicator that changes...Ch. 14 - Thymolphthalein is an indicator that changes from...Ch. 14 - When 25.00 mL of HNO3 are titrated with Sr(OH)2,...Ch. 14 - A solution of KOH has a pH of 13.29. It requires...Ch. 14 - A solution consisting of 25.00 g NH4Cl in 178 mL...Ch. 14 - A 50.0-mL sample of NaHSO3 is titrated with 22.94...Ch. 14 - A sample of 0.220 M triethylamine, (CH3CH2)3 N, is...Ch. 14 - A 35.00-mL sample of 0.487 M KBrO is titrated with...Ch. 14 - A 0.4000 M solution of nitric acid is used to...Ch. 14 - A 0.2481 M solution of KOH is used to titrate...Ch. 14 - Consider the titration of butyric acid (HBut) with...Ch. 14 - Morphine, C17H19O3N, is a weak base (K b =7.4107)....Ch. 14 - Consider a 10.0% (by mass) solution of...Ch. 14 - A solution is prepared by dissolving 0.350 g of...Ch. 14 - Prob. 53QAPCh. 14 - Ammonia gas is bubbled into 275 mL of water to...Ch. 14 - For an aqueous solution of acetic acid to be...Ch. 14 - Prob. 56QAPCh. 14 - Prob. 57QAPCh. 14 - Water is accidentally added to 350.00 mL of a...Ch. 14 - A solution of an unknown weak base...Ch. 14 - Consider an aqueous solution of HF. The molar heat...Ch. 14 - Each symbol in the box below represents a mole of...Ch. 14 - Use the same symbols as in Question 61 ( = anion,...Ch. 14 - The following is the titration curve for the...Ch. 14 - Prob. 64QAPCh. 14 - Follow the directions of Question 64. Consider two...Ch. 14 - Prob. 66QAPCh. 14 - Indicate whether each of the following statements...Ch. 14 - Prob. 68QAPCh. 14 - Consider the following titration curves. The...Ch. 14 - Consider the titration of HF (K a=6.7104) with...Ch. 14 - The species called glacial acetic acid is 98%...Ch. 14 - Four grams of a monoprotic weak acid are dissolved...Ch. 14 - Prob. 73QAPCh. 14 - Fifty cm3 of 1.000 M nitrous acid is titrated with...Ch. 14 - A diprotic acid, H2B(MM=126g/moL), is determined...Ch. 14 - Prob. 76QAPCh. 14 - Two students were asked to determine the Kb of an...Ch. 14 - How many grams of NaOH must be added to 1.00 L of...Ch. 14 - How many grams of NaF must be added to 70.00 mL of...Ch. 14 - Prob. 80QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Which solution is a buffer?(a) a solution that is 0.100 M in HNO2 and 0.100 M in HCl(b) a solution that is 0.100 M in HNO3 and 0.100 M in NaNO3(c) a solution that is 0.100 M in HNO2 and 0.100 M in NaCl(d) a solution that is 0.100 M in HNO2 and 0.100 M in NaNO2arrow_forwardCalculate the pH change that results when 15 mL of 2.7 M HCI is added to 600. mL of each of the following solutions. Use the Acid-Base Table. (a) pure water 4.0 -5.82 (b) 0.10 M CH3COO- 4.0 4.43 (c) 0.10 M CH3COOH 4.0 X (d) a solution that is 0.10 M in each CH3COO and CH3COOH. 4.0arrow_forwardNitesharrow_forward
- Give typed solution Which of the following would form a buffer if added to 250.0 mL of 0.150 M SnF2? (a) 0.100 mol of HCl (b) 0.060 mol of HCl (c) 0.040 mol of HCl (d) 0.040 mol of NaOH (e) 0.040 mol of HF *Please explain the steps in detailarrow_forward4. A solution prepared to be initially 1 M in NH3 and 0.5 M in HCl is (Kb for NH3 = 1.8 x 10¯5): (A) a solution with a pH less than 7 that is not a buffer solution (B) a buffer solution with a pH between 4 and 7 (C) a buffer solution with a pH between 7 and 10 (D) a solution with a pH greater than 7 that is not a buffer solution (E) a solution with a pH of 7arrow_forwardA buffer is prepared by titrating a 100.0 mL sample of 0.10 M NH3 with 50.0 mL of 0.10 M HNO3. What is the pH of thebuffer?(a) 4.74(b) 7.78(c) 7.05(d) 9.26arrow_forward
- A buffer is prepared by adding 4.8 g of (NH4)2SO4 to 425 mL of 0.258 M NH3. Assuming that the volume stays constant, what is pH of the buffer solution? Consider: Kb (NH3) = 1.8×10–5, and Molar Mass of (NH4)2SO4 = 132.14 g/mol. (A) 10.04 (B) 5.22 (C) 9.44 (D) 4.93 (E) 1.75arrow_forwardDetermine whether each compound is more soluble in an acidic solution than it is in a neutral solution.(a) BaF2 (b) AgI (c) Ca(OH)2arrow_forwardA buffer is prepared by adding 20.0 g of sodium acetate(CH3COONa) to 500 mL of a 0.150 M acetic acid(CH3COOH) solution. (a) Determine the pH of the buffer.(b) Write the complete ionic equation for the reaction thatoccurs when a few drops of hydrochloric acid are added tothe buffer. (c) Write the complete ionic equation for the reactionthat occurs when a few drops of sodium hydroxidesolution are added to the buffer.arrow_forward
- The major component of vinegar is acetic acid, CH3COOH. Its Ka is 1.8 × 10-5 . One student used 1.000 M NaOH to titrate 25.00 mL vinegar. At the end point, 21.82 mL NaOH was used. (a) What is the concentration of CH3COOH in vinegar? (b) What is the pH of the solution at the end point? (c) What indicator(s) the student should use in this titration? Explainarrow_forwardCalculate the pH at the following points in a titration of 40.0 mL of 0.100 M barbituric acid(Ka = 9.8 × 10−5) with 0.100 M KOH. (a) no KOH added (b) 20.0 mL of KOH solution added (c)39.0 mL of KOH solution added (d) 40.0 mL of KOH solution added (e) 41.0 mL of KOHSketch an appropriate pH titration curve indicating the buffer region, equivalence point,and excess base region. Why is the pH at the equivalence point not 7.00?arrow_forward(7) Calculate the pH of each of the following solutions: (a) 0.1000M Propanoic acid( HC H O,,K=1.3x105) (b) 0.1000M sodium propanoate (Na C HỎ) (c) 0.1000M HC₂H₂O, and 0.1000M Nа С¸¸0₂ 3 5 52 (d) After 0.020 mol of HCl is added to 1.00 L solution of (a) and (b) above. (e) After 0.020 mol of NaOH is added to 1.00 L solution of (a) and (b) above.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY