
Concept explainers
Calculate K for the reactions in Question 2.
(a)

Interpretation:
The value of K needs to be calculated for the net ionic equation for reaction between aqueous solution of sodium acetate and nitric acid.
Concept Introduction :
The relationship between the concentration of products and reactants at equilibrium for a general reaction:
Where A, B, C, and D represents chemical species and a, b, c, and d are the coefficients for balanced reaction.
The equilibrium expression, Kc for reversible reaction is determined by multiplying the concentrations of products together and divided by the concentrations of the reactants. Each concentration is raised to the power that is equal to the coefficient in the balanced reaction. So, the expression is:
Square brackets represent the concentration.
Answer to Problem 6QAP
Explanation of Solution
The net ionic reaction between aqueous solution of sodium acetate and nitric acid is as follows:
Since, for
As the required reaction is inverse of the dissociation reaction of
Substitute the value in the above expression as follows:
Therefore, the value of K is
(b)

Interpretation:
The value of K needs to be calculated for the net ionic equation for reaction between aqueous solution of hydrobromic acid and strontium hydroxide.
Concept Introduction :
The relationship between the concentration of products and reactants at equilibrium for a general reaction:
Where A, B, C, and D represents chemical species and a, b, c, and d are the coefficients for balanced reaction.
The equilibrium expression, Kc for reversible reaction is determined by multiplying the concentrations of products together and divided by the concentrations of the reactants. Each concentration is raised to the power that is equal to the coefficient in the balanced reaction. So, the expression is:
Square brackets represent the concentration.
Answer to Problem 6QAP
Explanation of Solution
The net ionic equation for the reaction between hydrobromic acid and strontium hydroxide is as follows:
Since, for
As the required reaction is inverse of the dissociation reaction of
Substituting the value in the above expression as below:
Therefore, the value of K is
(c)

Interpretation:
The value of K needs to be calculated for the net ionic equation for reaction between aqueous solution of hypochlorous acid and sodium cyanide.
Concept Introduction :
The relationship between the concentration of products and reactants at equilibrium for a general reaction:
Where A, B, C, and D represents chemical species and a, b, c, and d are the coefficients for balanced reaction.
The equilibrium expression, Kc for reversible reaction is determined by multiplying the concentrations of products together and divided by the concentrations of the reactants. Each concentration is raised to the power that is equal to the coefficient in the balanced reaction. So, the expression is:
Square brackets represent the concentration.
Answer to Problem 6QAP
48
Explanation of Solution
The net ionic equation for the reaction between Hypochlorous acid and sodium cyanide is as below:
Since, for
As the required reaction of HCN is inverse of the dissociation reaction of HCN so, the expression of K for this reaction is as follows:
Substituting the value in the above expression as follows:
=
The K value is 48.
(d)

Interpretation:
The value of K needs to be calculated for the net ionic equation for reaction between aqueous solution of sodium hydroxide and nitrous acid.
Concept Introduction :
The relationship between the concentration of products and reactants at equilibrium for a general reaction:
Where A, B, C, and D represents chemical species and a, b, c, and d are the coefficients for balanced reaction.
The equilibrium expression, Kc for reversible reaction is determined by multiplying the concentrations of products together and divided by the concentrations of the reactants. Each concentration is raised to the power that is equal to the coefficient in the balanced reaction. So, the expression is:
Square brackets represent the concentration.
Answer to Problem 6QAP
Explanation of Solution
The net ionic equation for the reaction between sodium hydroxide and nitrous acid is as below:
The expression of K for this reaction is:
The Kb value for NO2- is
The K value is
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry: Principles and Reactions
- Please draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFirefly luciferin exhibits three rings. Identify which of the rings are aromatic. Identify which lone pairs are involved in establishing aromaticity. The lone pairs are labeled A-D below.arrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardGiven a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forward
- CHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the steady-state approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the limiting or determining step approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. Indicate the approximation methods for solving the rate equation.arrow_forward
- TRANSMITTANCE เบบ Please identify the one structure below that is consistent with the 'H NMR and IR spectra shown and draw its complete structure in the box below with the protons alphabetically labeled as shown in the NMR spectrum and label the IR bands, including sp³C-H and sp2C-H stretch, indicated by the arrows. D 4000 OH LOH H₂C CH3 OH H₂C OCH3 CH3 OH 3000 2000 1500 HAVENUMBERI-11 1000 LOCH3 Draw your structure below and label its equivalent protons according to the peak labeling that is used in the NMR spectrum in order to assign the peaks. Integrals indicate number of equivalent protons. Splitting patterns are: s=singlet, d=doublet, m-multiplet 8 3Hb s m 1Hd s 3Hf m 2Hcd 2Had 1He 鄙视 m 7 7 6 5 4 3 22 500 T 1 0arrow_forwardRelative Transmittance 0.995 0.99 0.985 0.98 Please draw the structure that is consistent with all the spectral data below in the box and alphabetically label the equivalent protons in the structure (Ha, Hb, Hc ....) in order to assign all the proton NMR peaks. Label the absorption bands in the IR spectrum indicated by the arrows. INFRARED SPECTRUM 1 0.975 3000 2000 Wavenumber (cm-1) 1000 Structure with assigned H peaks 1 3 180 160 140 120 100 f1 (ppm) 80 60 40 20 0 C-13 NMR note that there are 4 peaks between 120-140ppm Integral values equal the number of equivalent protons 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 fl (ppm)arrow_forwardCalculate the pH of 0.0025 M phenol.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning




