EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 42SDP
Devise an experimental method whereby you can measure only the force required for forging the flash in impression-die forging.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One way to describe forging processes is by the amount of work that can be done in the die. Based on this grouping, what are the three main types?
Why the cupping test may not predict well the formability of sheet metals in actual forming
processes?
Cupping test uses square or rectangular specimens only.
Strain in some forming operations is not axi-symmetric.
Cupping test is mainly for compression
Stress is rarely uni-directional in sheet metal forming.
An open die forging operation is performed to produce a steel cylinder with a diameter of
9.7mm and a height of 1.7mm. The strength coefficient for this steel is 500MPA, and the
strain hardening exponent is 0.25. Coefficient of friction at the die-work interface is 0.12.
The initial stock of raw material has a diameter of 5mm.
(a) What height/length of stock is needed to provide sufficient volume of material for this
forging operation?
(b) Compute the maximum force that the punch must apply to form the head in this open-
die operation.
Chapter 14 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 14 - What is the difference between cold, warm, and hot...Ch. 14 - Explain the difference between open-die and...Ch. 14 - Explain the difference between fullering, edging,...Ch. 14 - What is flash? What is its function?Ch. 14 - Why is the intermediate shape of a part important...Ch. 14 - Describe the features of a typical forging die.Ch. 14 - Explain what is meant by load limited, energy...Ch. 14 - What type of parts can be produced by rotary...Ch. 14 - Why is hubbing an attractive alternative to...Ch. 14 - What is the difference between piercing and...
Ch. 14 - What is a hammer? What are the different kinds of...Ch. 14 - Why is there barreling in upsetting?Ch. 14 - What are the advantages and disadvantages of...Ch. 14 - Why are draft angles required in forging dies?Ch. 14 - Is a mandrel needed in swaging?Ch. 14 - Describe and explain the factors that influence...Ch. 14 - How can you tell whether a certain part is forged...Ch. 14 - Identify casting design rules, described in...Ch. 14 - Describe the factors involved in precision...Ch. 14 - Why is control of the volume of the blank...Ch. 14 - Why are there so many types of forging machines...Ch. 14 - What are the advantages and limitations of cogging...Ch. 14 - What are the advantages and limitations of using...Ch. 14 - Review Fig. 14.6e and explain why internal draft...Ch. 14 - Comment on your observations regarding the...Ch. 14 - Describe your observations concerning the control...Ch. 14 - Prob. 27QLPCh. 14 - Describe the difficulties involved in defining the...Ch. 14 - Describe the advantages of servo presses for...Ch. 14 - List the general recommendations you would make...Ch. 14 - Which would you recommend, (a) hot forging and...Ch. 14 - Take two solid, cylindrical specimens of equal...Ch. 14 - Calculate the room-temperature forging force for a...Ch. 14 - Using Eq. (14.2), estimate the forging force for...Ch. 14 - To what thickness can a solid cylinder of 1020...Ch. 14 - In Example 14.1, calculate the forging force,...Ch. 14 - Using Eq. (14.1), make a plot of the forging...Ch. 14 - How would you go about estimating the punch force...Ch. 14 - A mechanical press is powered by a 30-hp motor and...Ch. 14 - A solid cylindrical specimen, made of a perfectly...Ch. 14 - Devise an experimental method whereby you can...Ch. 14 - Assume that you represent the forging industry and...Ch. 14 - Figure P14.44 shows a round impression-die forging...Ch. 14 - Prob. 45SDPCh. 14 - Prob. 46SDPCh. 14 - Review the sequence of operations in the...Ch. 14 - Prob. 48SDPCh. 14 - Discuss the possible environmental concerns...Ch. 14 - List the advantages and disadvantages in using a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5) A steel specimen of rectangular cross section with 120 mm width, 180 mm thickness and 90 mm height was upset at room temperature by open-die forging to a height of 55 mm. If the strength coefficient and strain hardening exponent of this material were 1015 MPa and 0.17 respectively, the coefficient of friction is 0.2, and assuming that the thickness would not change during forging; determine the required upsetting force at the end of stroke.arrow_forwardCould you please solve this problem for mearrow_forwardA billet 100 mm long and 40 mm diameter is to be extruded in a direct extrusion with final diameter of product 32 mm. The semi die angle is 60°. The work metal has a strength coefficient 500 Map, and strain hardening 0.2 use the Johnson formula with a=0.8 and b=1.45 to estimate the extrusion strain. Determine the pressure applied to the end of the billet as the ram moves forward.arrow_forward
- You have been asked to work on some design problems and technically support the team working on extrusion and forging operations: 1) The team are extruding a billet that is 80 mm long with diameter of 40 mm is directly to a diameter of 20 mm. The extrusion die has a die angle of 75°, see Figure 1. For the work metal, K = 600 MPa and n = 0.25. In the Johnson extrusion strain equation, a = 0.8 and b = 1.4. Remaining billet length 75 Ram pressure, p D. Dr Figure 1: Extrusion process. Determine the following design parameters: (a) Extrusion ratio. (b) True strain (homogeneous deformation). (c) Extrusion strain. (d) Ram pressure at L= 80, 40, and 10 mm. (e) Draw the relationship between the ram pressure and billet length and discuss the results. What are your recommendations to dccrcase the required ram pressure?arrow_forward3. Write any four major forging defects and solution for those defects.arrow_forwardThe quantity of work that can be done in the die may be used as a defining feature of forging processes. Please identify the following three broad classes that this sorting generates.arrow_forward
- Show that the true strain rate in extruding a round billet of radius r, as a function of distance x from the entry of a conical die can be given as: 2Vorštana (ro-xtana) where; Vo: ram velocityarrow_forwardDuring a direct extrusion process for a billet with 5 in long and diameter 2.5 in to 1.6 in. For the work metal, strength coefficient is 75000 Ib/in, and strain hardening exponent is 0.4, also the die angle of extrusion is 90. In Johnson extrusion strain equation a = 0.8, and b= 1.5. Determine: (a) extrusion ratio (b) true strain (c) extrusion strain, and (d) ram pressure at length 5, 4.2, 2.3,1.5,and 0 in.arrow_forwardThe total true strain applied and the final length.arrow_forward
- Please Identify the correct answer along with concise reasoning( Step-by-step is preferred) on why the selected option is the right answer. Please also explain concisely why the remaining options are incorrect. I'll rate for the response positively if the answer is correct. Thx!arrow_forwardA 3in long and 1in diameter billet is extruded in a direct extrusion operation with an rx = 4.0. The extrusion has a cross section. The angle of the die (half angle) is 90o. The work metal has a resistance coefficient of 60ksi and a strain hardening exponent of 0.18. Use Johnston's formula with a = 0.8 and b = 1.5 to estimate the extrusion stress. Determine the pressure applied to the end of the billet when the piston moves forward.arrow_forwardq3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License