
(a)
Interpretation:
Structural formula for the simplest tertiary alcohol with an acyclic R group has to be drawn.
Concept Introduction:
Alcohols are classified as primary, secondary, or tertiary depending upon the number of carbon atoms that is bonded to the carbon atom bearing hydroxyl group.
Primary alcohol is the one in which the carbon atom bearing the hydroxyl group is bonded to only one other carbon atom.
Secondary alcohol is the one in which the carbon atom bearing the hydroxyl group is bonded to two other carbon atoms.
Tertiary alcohol is the one in which the carbon atom bearing the hydroxyl group is bonded to three other carbon atoms.
Primary is denoted as
(b)
Interpretation:
Structural formula for the simplest secondary alcohol with a cyclic R group has to be drawn.
Concept Introduction:
Alcohols are classified as primary, secondary, or tertiary depending upon the number of carbon atoms that is bonded to the carbon atom bearing hydroxyl group.
Primary alcohol is the one in which the carbon atom bearing the hydroxyl group is bonded to only one other carbon atom.
Secondary alcohol is the one in which the carbon atom bearing the hydroxyl group is bonded to two other carbon atoms.
Tertiary alcohol is the one in which the carbon atom bearing the hydroxyl group is bonded to three other carbon atoms.
Primary is denoted as

Want to see the full answer?
Check out a sample textbook solution
Chapter 14 Solutions
General, Organic, And Biological Chemistry, Hybrid (with Owlv2 Quick Prep For General Chemistry Printed Access Card)
- If the energy absorbed per mole of gas is 480 kJ mol-1, indicate the number of Einsteins per mole.Data: Energy of each photon: 0.7835x10-18 J.arrow_forwardIf the energy absorbed per mole of gas is 480 kJ mol-1, indicate the number of Einsteins per mole.arrow_forwardThe quantum yield of the photochemical decay of HI is 2. Calculating the moles of HI per kJ of radiant energy can be decayed knowing that the energy absorbed per mole of photons is 490 kJ.arrow_forward
- The quantum yield of the photochemical decay of HI is 2. Calculate the number of Einsteins absorbed per mole knowing that the energy absorbed per mole of photons is 490 kJ.arrow_forwardThe quantum yield of the photochemical decay of HI is 2. How many moles of HI per kJ of radiant energy can be decayed knowing that the energy absorbed per mole of photons is 490 kJ.arrow_forwardIf the energy absorbed per mole of photons is 450 kJ, the number of Einsteins absorbed per 1 mole.arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





