EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
14th Edition
ISBN: 9780133976588
Author: HIBBELER
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13.5, Problem 62P
A girl having a mass of 25 kg sits at the edge of the merry-go-round so her center of mass G is at a distance of 1.5 m from the axis of rotation. If the angular motion of the platform is slowly increased so that the girl’s tangential component of acceleration can be neglected, determine the maximum speed which she can have before she begins to slip off the merry-go-round. The coefficient of static friction between the girl and the merry-go-round is μs = 0.3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Qf, Qa,Qm, Qcon,Qfg, Qbd, Qref,Qloss ( meaning, formula, percentage, and importance of higher value na qf, qa etc)
The beam is supported by a fixed support at point C and a roller at point A. It also has an internal hinge at point B. The beam supports a point load at point D, a moment at point A and a distributed load on segment BC.
a. calculate the support reactions at points A and C
b. calculate the internal resultant loadings (N, V, M) at points E and F, which lies in the middle between points A and D
P = 4 kip
Ma = 5 kip-ft
w1 = 3 kip/ft and w2 = 4 kip/ft
a = 3 ft
From the image of the pyramid, I want to find what s1 hat, s2 hat, and s3 hat are. I think s3 hat is just equal to e3 hat right? What about the others?
Chapter 13 Solutions
EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
Ch. 13.4 - In each case, determine its velocity when t = 2 s...Ch. 13.4 - In each case, determine its velocity at s = 8 m if...Ch. 13.4 - Determine the initial acceleration of the 10-kg...Ch. 13.4 - Write the equations of motion in the x and y...Ch. 13.4 - The motor winds n the cable with a constant...Ch. 13.4 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13.4 - A spring of stiffness k = 500 N/m is mounted...Ch. 13.4 - The spring has a stiffness k = 200 N/m and is...Ch. 13.4 - Block B rests upon a smooth surface. If the...Ch. 13.4 - The 6-lb particle is subjected to the action of...
Ch. 13.4 - The two boxcars A and B have a weight of 20 000 lb...Ch. 13.4 - If the coefficient of kinetic friction between the...Ch. 13.4 - If the 50-kg crate starts from rest and achieves a...Ch. 13.4 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13.4 - The 10-lb block has a speed of 4 ft/s when the...Ch. 13.4 - The 10-lb block has a speed of 4 ft/s when the...Ch. 13.4 - The speed of the 3500-lb sports car is plotted...Ch. 13.4 - The conveyor belt is moving at 4 m/s. If the...Ch. 13.4 - The conveyor belt is designed to transport...Ch. 13.4 - Determine the time needed to pull the cord at B...Ch. 13.4 - Cylinder B has a mass m and is hoisted using the...Ch. 13.4 - Block A has a weight of 8 lb and block B has a...Ch. 13.4 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13.4 - The motor lifts the 50-kg crate with an...Ch. 13.4 - The 75-kg man pushes on the 150-kg crate with a...Ch. 13.4 - The coefficient of kinetic friction is k, and the...Ch. 13.4 - A 40-lb suitcase slides from rest 20 ft down the...Ch. 13.4 - Solve Prob. 13-18 if the suitcase has an initial...Ch. 13.4 - If the coefficient of kinetic friction between...Ch. 13.4 - The conveyor belt delivers each 12-kg crate to the...Ch. 13.4 - The 50-kg block A is released from rest. Determine...Ch. 13.4 - If the supplied force F = 150 N, determine the...Ch. 13.4 - A 60-kg suitcase slides from rest 5 m down the...Ch. 13.4 - Solve Prob. 13-24 if the suitcase has an initial...Ch. 13.4 - The 1.5 Mg sports car has a tractive force of F =...Ch. 13.4 - The conveyor belt is moving downward at 4 m/s. If...Ch. 13.4 - At the instant shown the 100-lb block A is moving...Ch. 13.4 - Determine the velocity of the 200-lb crate when t...Ch. 13.4 - Determine the velocity of the 400-kg crate A when...Ch. 13.4 - The tractor is used to lift the 150-kg load B with...Ch. 13.4 - If the tractor travels to the right with an...Ch. 13.4 - Block A and B each have a mass m. Determine the...Ch. 13.4 - The 4-kg smooth cylinder is supported by the...Ch. 13.4 - The coefficient of static friction between the...Ch. 13.4 - If the spring is unstretched when s = 0 and the...Ch. 13.4 - Neglecting the mass of the rope and pulley, and...Ch. 13.4 - Determine the force in the cable when t = 5 s, if...Ch. 13.4 - An electron of mass m is discharged with an...Ch. 13.4 - The 400-lb cylinder at A is hoisted using the...Ch. 13.4 - What is their velocity at this instant?Ch. 13.4 - Block A has a mass mA and is attached to a spring...Ch. 13.4 - A parachutist having a mass m opens his parachute...Ch. 13.4 - Neglect the mass of the motor and pulleys.Ch. 13.4 - If the force exerted on cable AB by the motor is F...Ch. 13.4 - Blocks A and B each have a mass m. Determine the...Ch. 13.4 - Blocks A and Beach have a mass m. Determine the...Ch. 13.4 - If the board AC pushes on the block at an angle ...Ch. 13.4 - If a horizontal force P = 12lb is applied to block...Ch. 13.4 - A freight elevator, including its load, has a mass...Ch. 13.4 - The block A has a mass mA and rests on the pan B,...Ch. 13.5 - P13-5.Set up the n, t axes and write the equations...Ch. 13.5 - P13-6.Set up the n, b, t axes and write the...Ch. 13.5 - The block rests at a distance of 2 m from the...Ch. 13.5 - Prob. 8FPCh. 13.5 - A pilot weighs 150 lb and is traveling at a...Ch. 13.5 - The sports car is traveling along a 30 banked road...Ch. 13.5 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13.5 - The motorcycle has a mass of 0.5 Mg and a...Ch. 13.5 - Prob. 52PCh. 13.5 - Prob. 53PCh. 13.5 - The 2-kg block B and 15-kg cylinder A are...Ch. 13.5 - Determine the maximum constant speed at which the...Ch. 13.5 - Cartons having a mass of 5 kg are required to move...Ch. 13.5 - Prob. 57PCh. 13.5 - Prob. 58PCh. 13.5 - Prob. 59PCh. 13.5 - Prob. 60PCh. 13.5 - At the instant B = 60, the boys center of mass G...Ch. 13.5 - A girl having a mass of 25 kg sits at the edge of...Ch. 13.5 - The pendulum bob B has a weight of 5 lb and is...Ch. 13.5 - The pendulum bob B has a mass m and is released...Ch. 13.5 - Determine the constant speed of the passengers on...Ch. 13.5 - A motorcyclist in a circus rides his motorcycle...Ch. 13.5 - The vehicle is designed to combine the feel of a...Ch. 13.5 - The 0.8-Mg car travels over the hill having the...Ch. 13.5 - The 0.8-Mg car travels over the hill having the...Ch. 13.5 - When it reaches the curved portion AB, it is...Ch. 13.5 - Determine the resultant normal and frictional...Ch. 13.5 - If he rotates about the z axis with a constant...Ch. 13.5 - Determine the maximum speed at which the car with...Ch. 13.5 - Determine the maximum constant speed at which the...Ch. 13.5 - The box has a mass m and slides down the smooth...Ch. 13.5 - Prove that if the block is released from rest at...Ch. 13.5 - The cylindrical plug has a weight of 2 lb and it...Ch. 13.5 - When crossing an intersection, a motorcyclist...Ch. 13.5 - The airplane, traveling at a constant speed of 50...Ch. 13.5 - The 2-kg pendulum bob moves in the vertical plane...Ch. 13.5 - The 2-kg pendulum bob moves in the vertical plane...Ch. 13.5 - If it has a speed of 1.5 m/s when y = 0.2 m,...Ch. 13.5 - The ball has a mass m and is attached to the cord...Ch. 13.6 - If the attached spring has a stiffness k = 2...Ch. 13.6 - Determine the constant angular velocity of the...Ch. 13.6 - If = ( t2) rad, where t is in seconds, determine...Ch. 13.6 - The 2-Mg car is traveling along the curved road...Ch. 13.6 - The 0.2-kg pin P is constrained to move in the...Ch. 13.6 - If the cam is rotating at a constant rate of 6...Ch. 13.6 - Determine the magnitude of the resultant force...Ch. 13.6 - Determine the magnitude of the unbalanced force...Ch. 13.6 - Rod OA rotates counterclockwise with a constant...Ch. 13.6 - The boy of mass 40 kg is sliding down the spiral...Ch. 13.6 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13.6 - The arm is rotating at a rate of = 4 rad/s when ...Ch. 13.6 - If arm OA rotates with a constant clockwise...Ch. 13.6 - Determine the normal and frictional driving forces...Ch. 13.6 - A smooth can C, having a mass of 3 kg, is lifted...Ch. 13.6 - Prob. 96PCh. 13.6 - Prob. 97PCh. 13.6 - The particle has a mass of 0.5 kg and is confined...Ch. 13.6 - A car of a roller coaster travels along a track...Ch. 13.6 - The 0.5-lb ball is guided along the vertical...Ch. 13.6 - The ball of mass misguided along the vertical...Ch. 13.6 - Using a forked rod, a smooth cylinder P, having a...Ch. 13.6 - The pilot of the airplane executes a vertical loop...Ch. 13.6 - The collar has a mass of 2 kg and travels along...Ch. 13.6 - The particle has a mass of 0.5 kg and is confined...Ch. 13.6 - Solve Prob. 13-105 If the arm has an angular...Ch. 13.6 - The forked rod is used to move the smooth 2-lb...Ch. 13.6 - Prob. 108PCh. 13.6 - Rod OA rotates counterclockwise at a constant...Ch. 13.6 - Solve Prob. 13-109 if motion is in the vertical...Ch. 13.7 - If his speed is a constant vP = 80 ft/s, determine...Ch. 13.7 - The earth has an orbit with eccentricity 0.0167...Ch. 13.7 - Prob. 114PCh. 13.7 - Determine the speed of a satellite launched...Ch. 13.7 - Prob. 116PCh. 13.7 - Prove Keplers third law of motion. Hint: Use Eqs....Ch. 13.7 - Prob. 118PCh. 13.7 - Prob. 119PCh. 13.7 - Determine the constant speed of satellite S so...Ch. 13.7 - Prob. 121PCh. 13.7 - Prob. 122PCh. 13.7 - Prob. 123PCh. 13.7 - Prob. 124PCh. 13.7 - The rocket is traveling around the earth in free...Ch. 13.7 - Prob. 127PCh. 13.7 - Prob. 128PCh. 13.7 - Prob. 129PCh. 13.7 - Prob. 130PCh. 13.7 - The rocket is traveling around the earth in free...Ch. 13.7 - Prob. 132PCh. 13.7 - Prob. 3CPCh. 13.7 - If the trailer has a mass of 250 kg and coasts 45...Ch. 13.7 - The coefficient of kinetic friction between the...Ch. 13.7 - Block B rests on a smooth surface. If the...Ch. 13.7 - If the motor draws in the cable at a rate of v =...Ch. 13.7 - The ball has a mass of 30 kg and a speed v = 4 m/s...Ch. 13.7 - If the coefficient of static friction between the...Ch. 13.7 - If at the instant it reaches point A it has a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 1. A tube rotates in the horizontal ry plane with a constant angular velocity w about the z-axis. A particle of mass m is released from a radial distance R when the tube is in the position shown. This problem is based on problem 3.2 in the text. R m 2R Figure 1 x a) Draw a free body diagram of the particle if the tube is frictionless. b) Draw a free body diagram of the particle if the coefficient of friction between the sides of the tube and the particle is = k = p. c) For the case where the tube is frictionless, what is the radial speed at which the particle leaves the tube? d) For the case where there is friction, derive a differential equation that would allow you to solve for the radius of the particle as a function of time. I'm only looking for the differential equation. DO NOT solve it. 1 e) If there is no friction, what is the angle of the tube when the particle exits? • Hint: You may need to solve a differential equation for the last part. The "potentially useful…arrow_forwardQuestion 2. A smooth uniform sphere of mass m and radius r is squeezed between two massless levers, each of length 1, which are inclined at an angle with the vertical. A mechanism at pivot point O ensures that the angles & remain the same at all times so that the sphere moves straight upward. This problem is based on Problem 3-1 in the text. P P r Figure 2 a) Draw appropriate freebody diagrams of the system assuming that there is no friction. b) Draw appropriate freebody diagrams of the system assuming that there is a coefficient of friction between the sphere and the right lever of μ. c) If a force P is applied between the ends of the levers (shown in the diagram), and there is no friction, what is the acceleration of the sphere when = 30°arrow_forwardIf you had a matrix A = [1 2 3; 4 5 6; 7 8 9] and a matrix B = [1 2 3], how would you cross multiply them i.e. what is the cross product of AxB. what would be the cross product of a dyadic with a vector?arrow_forward
- Problem 3: The inertia matrix can be written in dyadic form which is particularly useful when inertia information is required in various vector bases. On the next page is a right rectangular pyramid of total mass m. Note the location of point Q. (a) Determine the inertia dyadic for the pyramid P, relative to point Q, i.e., 7%, for unit vectors ₁₁, 2, 3.arrow_forwardCan you solve for v? Also, what is A x uarrow_forwardThe external loads on the element shown below at the free end are F = 1.75 kN, P = 9.0 kN, and T = 72 Nm. The tube's outer diameter is 50 mm and the inner diameter is 45 mm. Given: A(the cross-sectional area) is 3.73 cm², Moment inertial I is 10.55 cm4, and J polar moment inertial is 21.1 cm4. Determine the following. (1) The critical element(s) of the bar. (2) Show the state of stress on a stress element for each critical element. -120 mm- Farrow_forward
- A crate weighs 530 lb and is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 42 in above the top of the crate directly over the geometric center of the top surface. Use the dimensions given in the table below to determine the tension in each of the three ropes. 2013 Michael Swanbom ↑ Z C BY NC SA b x B у D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 30 in b 43 in с 4.5 in The tension in rope AB is lb The tension in rope AC is lb The tension in rope AD is lbarrow_forwardThe airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. a.) If = 11.3°, determine the thrust and lift forces required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle - and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. Уллу Fdrag 10. Ө Fthrust cc 10 2013 Michael Swanbom BY NC SA Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to lbs. The lift force is equal to Part (b) The trajectory angle is equal to deg. The lift force is equal to lbs. lbs.arrow_forwardThe hoist consists of a single rope and an arrangement of frictionless pulleys as shown. If the angle 0 = 59°, determine the force that must be applied to the rope, Frope, to lift a load of 4.4 kN. The three-pulley and hook assembly at the center of the system has a mass of 22.5 kg with a center of mass that lies on the line of action of the force applied to the hook. e ΘΕ B CC 10 BY NC SA 2013 Michael Swanbom Fhook Note the figure may not be to scale. Frope = KN HO Fropearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License