EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
14th Edition
ISBN: 9780133976588
Author: HIBBELER
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.4, Problem 32P
If the tractor travels to the right with an acceleration of 3m/s2 and has a velocity of 4m/s at the instant sA = 5m, determine the tension in the rope at this instant. When sA = 0, sB = 0.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The tractor is used to lift the 170-kg load B with the
24-m-long rope, boom, and pulley system. The tractor
travels to the right with an acceleration of 4 m/s² and
has a velocity of 5 m/s at the instant SA = 5 m. When
SA = 0, SB = 0. (Figure 1)
Figure
12 m
-SA
1 of 1
Part A
Determine the tension in the rope at this instant.
Express your answer to three significant figu
T =
Value
N
Submit Previous Answers Request Answ
X Incorrect; Try Again
A motorcycle starts from rest at t = 0 and travels along a straight road with a constant acceleration of 6 ft/sec2 until it reaches a speed of 50 ft/s and maintains this speed throughout the duration of the motion. Also, when t = 0, a car located 6000 ft away, travels towards the motorcycle at a constant velocity of 30 ft/s.
Determine the time at which the two vehicles pass each other,Calculate the distance traveled by the motorcycle the moment that the two vehicles pass each other, Calculate the distance traveled by the car the moment that the two vehicles pass each other.
The horizontal force P = 40-10t N (t is the time measured in seconds) is applied to the 2-
kg collar that slides along the inclined rod.
2 kg-
-P = (40– 10r)N
At time t = 0, the position coordinate of the collar is x = 0, and its velocity is vo = 3 m/s
directed down the rod. Find the time T and the speed Sof the collar when it returns to the
position x = 0 for the first time. Neglect friction.
Chapter 13 Solutions
EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
Ch. 13.4 - In each case, determine its velocity when t = 2 s...Ch. 13.4 - In each case, determine its velocity at s = 8 m if...Ch. 13.4 - Determine the initial acceleration of the 10-kg...Ch. 13.4 - Write the equations of motion in the x and y...Ch. 13.4 - The motor winds n the cable with a constant...Ch. 13.4 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13.4 - A spring of stiffness k = 500 N/m is mounted...Ch. 13.4 - The spring has a stiffness k = 200 N/m and is...Ch. 13.4 - Block B rests upon a smooth surface. If the...Ch. 13.4 - The 6-lb particle is subjected to the action of...
Ch. 13.4 - The two boxcars A and B have a weight of 20 000 lb...Ch. 13.4 - If the coefficient of kinetic friction between the...Ch. 13.4 - If the 50-kg crate starts from rest and achieves a...Ch. 13.4 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13.4 - The 10-lb block has a speed of 4 ft/s when the...Ch. 13.4 - The 10-lb block has a speed of 4 ft/s when the...Ch. 13.4 - The speed of the 3500-lb sports car is plotted...Ch. 13.4 - The conveyor belt is moving at 4 m/s. If the...Ch. 13.4 - The conveyor belt is designed to transport...Ch. 13.4 - Determine the time needed to pull the cord at B...Ch. 13.4 - Cylinder B has a mass m and is hoisted using the...Ch. 13.4 - Block A has a weight of 8 lb and block B has a...Ch. 13.4 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13.4 - The motor lifts the 50-kg crate with an...Ch. 13.4 - The 75-kg man pushes on the 150-kg crate with a...Ch. 13.4 - The coefficient of kinetic friction is k, and the...Ch. 13.4 - A 40-lb suitcase slides from rest 20 ft down the...Ch. 13.4 - Solve Prob. 13-18 if the suitcase has an initial...Ch. 13.4 - If the coefficient of kinetic friction between...Ch. 13.4 - The conveyor belt delivers each 12-kg crate to the...Ch. 13.4 - The 50-kg block A is released from rest. Determine...Ch. 13.4 - If the supplied force F = 150 N, determine the...Ch. 13.4 - A 60-kg suitcase slides from rest 5 m down the...Ch. 13.4 - Solve Prob. 13-24 if the suitcase has an initial...Ch. 13.4 - The 1.5 Mg sports car has a tractive force of F =...Ch. 13.4 - The conveyor belt is moving downward at 4 m/s. If...Ch. 13.4 - At the instant shown the 100-lb block A is moving...Ch. 13.4 - Determine the velocity of the 200-lb crate when t...Ch. 13.4 - Determine the velocity of the 400-kg crate A when...Ch. 13.4 - The tractor is used to lift the 150-kg load B with...Ch. 13.4 - If the tractor travels to the right with an...Ch. 13.4 - Block A and B each have a mass m. Determine the...Ch. 13.4 - The 4-kg smooth cylinder is supported by the...Ch. 13.4 - The coefficient of static friction between the...Ch. 13.4 - If the spring is unstretched when s = 0 and the...Ch. 13.4 - Neglecting the mass of the rope and pulley, and...Ch. 13.4 - Determine the force in the cable when t = 5 s, if...Ch. 13.4 - An electron of mass m is discharged with an...Ch. 13.4 - The 400-lb cylinder at A is hoisted using the...Ch. 13.4 - What is their velocity at this instant?Ch. 13.4 - Block A has a mass mA and is attached to a spring...Ch. 13.4 - A parachutist having a mass m opens his parachute...Ch. 13.4 - Neglect the mass of the motor and pulleys.Ch. 13.4 - If the force exerted on cable AB by the motor is F...Ch. 13.4 - Blocks A and B each have a mass m. Determine the...Ch. 13.4 - Blocks A and Beach have a mass m. Determine the...Ch. 13.4 - If the board AC pushes on the block at an angle ...Ch. 13.4 - If a horizontal force P = 12lb is applied to block...Ch. 13.4 - A freight elevator, including its load, has a mass...Ch. 13.4 - The block A has a mass mA and rests on the pan B,...Ch. 13.5 - P13-5.Set up the n, t axes and write the equations...Ch. 13.5 - P13-6.Set up the n, b, t axes and write the...Ch. 13.5 - The block rests at a distance of 2 m from the...Ch. 13.5 - Prob. 8FPCh. 13.5 - A pilot weighs 150 lb and is traveling at a...Ch. 13.5 - The sports car is traveling along a 30 banked road...Ch. 13.5 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13.5 - The motorcycle has a mass of 0.5 Mg and a...Ch. 13.5 - Prob. 52PCh. 13.5 - Prob. 53PCh. 13.5 - The 2-kg block B and 15-kg cylinder A are...Ch. 13.5 - Determine the maximum constant speed at which the...Ch. 13.5 - Cartons having a mass of 5 kg are required to move...Ch. 13.5 - Prob. 57PCh. 13.5 - Prob. 58PCh. 13.5 - Prob. 59PCh. 13.5 - Prob. 60PCh. 13.5 - At the instant B = 60, the boys center of mass G...Ch. 13.5 - A girl having a mass of 25 kg sits at the edge of...Ch. 13.5 - The pendulum bob B has a weight of 5 lb and is...Ch. 13.5 - The pendulum bob B has a mass m and is released...Ch. 13.5 - Determine the constant speed of the passengers on...Ch. 13.5 - A motorcyclist in a circus rides his motorcycle...Ch. 13.5 - The vehicle is designed to combine the feel of a...Ch. 13.5 - The 0.8-Mg car travels over the hill having the...Ch. 13.5 - The 0.8-Mg car travels over the hill having the...Ch. 13.5 - When it reaches the curved portion AB, it is...Ch. 13.5 - Determine the resultant normal and frictional...Ch. 13.5 - If he rotates about the z axis with a constant...Ch. 13.5 - Determine the maximum speed at which the car with...Ch. 13.5 - Determine the maximum constant speed at which the...Ch. 13.5 - The box has a mass m and slides down the smooth...Ch. 13.5 - Prove that if the block is released from rest at...Ch. 13.5 - The cylindrical plug has a weight of 2 lb and it...Ch. 13.5 - When crossing an intersection, a motorcyclist...Ch. 13.5 - The airplane, traveling at a constant speed of 50...Ch. 13.5 - The 2-kg pendulum bob moves in the vertical plane...Ch. 13.5 - The 2-kg pendulum bob moves in the vertical plane...Ch. 13.5 - If it has a speed of 1.5 m/s when y = 0.2 m,...Ch. 13.5 - The ball has a mass m and is attached to the cord...Ch. 13.6 - If the attached spring has a stiffness k = 2...Ch. 13.6 - Determine the constant angular velocity of the...Ch. 13.6 - If = ( t2) rad, where t is in seconds, determine...Ch. 13.6 - The 2-Mg car is traveling along the curved road...Ch. 13.6 - The 0.2-kg pin P is constrained to move in the...Ch. 13.6 - If the cam is rotating at a constant rate of 6...Ch. 13.6 - Determine the magnitude of the resultant force...Ch. 13.6 - Determine the magnitude of the unbalanced force...Ch. 13.6 - Rod OA rotates counterclockwise with a constant...Ch. 13.6 - The boy of mass 40 kg is sliding down the spiral...Ch. 13.6 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13.6 - The arm is rotating at a rate of = 4 rad/s when ...Ch. 13.6 - If arm OA rotates with a constant clockwise...Ch. 13.6 - Determine the normal and frictional driving forces...Ch. 13.6 - A smooth can C, having a mass of 3 kg, is lifted...Ch. 13.6 - Prob. 96PCh. 13.6 - Prob. 97PCh. 13.6 - The particle has a mass of 0.5 kg and is confined...Ch. 13.6 - A car of a roller coaster travels along a track...Ch. 13.6 - The 0.5-lb ball is guided along the vertical...Ch. 13.6 - The ball of mass misguided along the vertical...Ch. 13.6 - Using a forked rod, a smooth cylinder P, having a...Ch. 13.6 - The pilot of the airplane executes a vertical loop...Ch. 13.6 - The collar has a mass of 2 kg and travels along...Ch. 13.6 - The particle has a mass of 0.5 kg and is confined...Ch. 13.6 - Solve Prob. 13-105 If the arm has an angular...Ch. 13.6 - The forked rod is used to move the smooth 2-lb...Ch. 13.6 - Prob. 108PCh. 13.6 - Rod OA rotates counterclockwise at a constant...Ch. 13.6 - Solve Prob. 13-109 if motion is in the vertical...Ch. 13.7 - If his speed is a constant vP = 80 ft/s, determine...Ch. 13.7 - The earth has an orbit with eccentricity 0.0167...Ch. 13.7 - Prob. 114PCh. 13.7 - Determine the speed of a satellite launched...Ch. 13.7 - Prob. 116PCh. 13.7 - Prove Keplers third law of motion. Hint: Use Eqs....Ch. 13.7 - Prob. 118PCh. 13.7 - Prob. 119PCh. 13.7 - Determine the constant speed of satellite S so...Ch. 13.7 - Prob. 121PCh. 13.7 - Prob. 122PCh. 13.7 - Prob. 123PCh. 13.7 - Prob. 124PCh. 13.7 - The rocket is traveling around the earth in free...Ch. 13.7 - Prob. 127PCh. 13.7 - Prob. 128PCh. 13.7 - Prob. 129PCh. 13.7 - Prob. 130PCh. 13.7 - The rocket is traveling around the earth in free...Ch. 13.7 - Prob. 132PCh. 13.7 - Prob. 3CPCh. 13.7 - If the trailer has a mass of 250 kg and coasts 45...Ch. 13.7 - The coefficient of kinetic friction between the...Ch. 13.7 - Block B rests on a smooth surface. If the...Ch. 13.7 - If the motor draws in the cable at a rate of v =...Ch. 13.7 - The ball has a mass of 30 kg and a speed v = 4 m/s...Ch. 13.7 - If the coefficient of static friction between the...Ch. 13.7 - If at the instant it reaches point A it has a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The collar is given a speed v₁ = 5 m/s to the left at position A. What is its speed at B? The guide is smooth so that the collar is not subject to any friction. The unstretched length of the spring is R = 1.2 m and the spring constant is k = 500 N/m. (15 points).arrow_forwardThe horizontal force P = 8 − 2t lb (t is the time measured in seconds)is applied to the 5-lb collar that slides along the inclined rod. At time t = 0, the position coordinate of the collar is x = 0, and its velocity is v0 = 10 ft/s directed down the rod. Find the time and the speed of the collar when it returns to the position x = 0 for the first time. Neglect friction.arrow_forwardQ2: The cart is moving down the incline with a velocity vo = 20 m/s at t = 0, at which time the force P begins to act as shown. After 5 seconds the force continues at the 50-N level. Determine the velocity of the cart at time t = 8 s and calculate the time t at which the cart velocity is zero. P, N Parabolic 50 vo = 20 m/s 6 kg t, s 15°arrow_forward
- 2/211 Determine the vertical rise h of the load W during 5 seconds if the hoisting drum wraps cable around it at the constant rate of 320 mm/s. Warrow_forwardThe 400-kg mine car is hoisted up the incline using the cable and motor M. For a short time, the force in the cable is F = (3500 t2) N, where t is in seconds. ( Figure 1) Figure 17 7/8 15 ₁ = 2 m/s 1 of 1 Part A If the car has an initial velocity v₁ = 2m/s at s = 0 and t = 0, determine the distance it moves up the plane when t = 3 s. Express your answer to three significant figures and include the appropriate units. 8 = Value Submit HÅ Provide Feedback Request Answer P Pearson wwwww Units ? Next >arrow_forwardIf the motor draws in the cable with an acceleration of 3 m/s^2, determine the reactions at the supports A and B. The beam has a uniform mass of 30 kg/m, and the crate has a mass of 200 kg. Neglect the mass of the motor and pulleys.arrow_forward
- Parvinbhaiarrow_forwardwrite the detail solution pleasearrow_forwardThe distance y = 2.5 m. Find the upward velocity of A if the downward velocity of B is 3.3 m/s. Neglect the diameters of the pulleys. Use the expression that you derived for the length L of the rope (using variables for sA and y) to derive a relationship between the velocities of A and B. If the downward velocity of B is 3.3 m/s when y = 2.5 m, what is the upward velocity of A (enter a positive number)?Answer: vA = ____ m/sarrow_forward
- The ball at A is kicked such that 0, = 45° . If it strikes the ground at B having coordinates x = 15 ft, y = - 9 ft, determine the speed at which it is kicked and the speed at which it strikes the ground. y=-004r?arrow_forward3/98 The small cart has a speed va = 4 m/s as it passes point A. It moves without appreciable friction and passes over the top hump of the track. Determine the cart speed as it passes point B. Is knowledge of the shape of the track necessary? VA= 4 m/s 1.8m. A Barrow_forwardDetermine an expression for the velocity vA of the cart A down the incline in terms of the upward velocity vB of cylinder B. If h = 1.48 m, x = 4.15 m, and vB = 1.90 m/s, what is vA?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY