EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
14th Edition
ISBN: 9780133976588
Author: HIBBELER
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.6, Problem 104P
The collar has a mass of 2 kg and travels along the smooth horizontal rod defined by the equiangular spiral r = (eθ) m, where θ is in radians. Determine the tangential force F and the normal force N acting on the collar when θ = 45°, if the force F maintains a constant angular motion θ = 2rad/s.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The particle of mass m = 2.4 kg is attached to the light rigid rod of length L = 0.77 m, and the assembly rotates about a horizontal axis through O with a constant angular velocity θ˙θ˙ = ω = 3.5 rad/s. Determine the force T in the rod when θ = 29°. The force T is positive if in tension, negative if in compression.
A uniform plate has a weight of 50 lb. Link AB is subjected to a couple moment of M = 10 lb # ft and has a clockwise angular velocity of 2 rad>s at the instant u = 30°. Determine the force developed in link CD and the tangential component of the acceleration of the plate’s mass center at this instant. Neglect the mass of links AB and CD.
PLEASE EXPLAIN THE N-T COORDINATE SYSTEM (HOW DO YOU KNOW WHICH WAY IS THE N-DIRECTION AND T-DIRECTION)
The uniform 50-kg sphere has radius r = 0.2 m and is
welded to the center of the uniform 30-kg shaft as
shown. When a constant couple moment M is applied
to the shaft, its angular velocity reaches 74 rad/s after
4 s. Determine the magnitude of the moment M.
Write your answer in N.m but do not write the units.
M
R= 0.1 m
Taylor e m
Te am
Answer:
Answer
Chapter 13 Solutions
EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
Ch. 13.4 - In each case, determine its velocity when t = 2 s...Ch. 13.4 - In each case, determine its velocity at s = 8 m if...Ch. 13.4 - Determine the initial acceleration of the 10-kg...Ch. 13.4 - Write the equations of motion in the x and y...Ch. 13.4 - The motor winds n the cable with a constant...Ch. 13.4 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13.4 - A spring of stiffness k = 500 N/m is mounted...Ch. 13.4 - The spring has a stiffness k = 200 N/m and is...Ch. 13.4 - Block B rests upon a smooth surface. If the...Ch. 13.4 - The 6-lb particle is subjected to the action of...
Ch. 13.4 - The two boxcars A and B have a weight of 20 000 lb...Ch. 13.4 - If the coefficient of kinetic friction between the...Ch. 13.4 - If the 50-kg crate starts from rest and achieves a...Ch. 13.4 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13.4 - The 10-lb block has a speed of 4 ft/s when the...Ch. 13.4 - The 10-lb block has a speed of 4 ft/s when the...Ch. 13.4 - The speed of the 3500-lb sports car is plotted...Ch. 13.4 - The conveyor belt is moving at 4 m/s. If the...Ch. 13.4 - The conveyor belt is designed to transport...Ch. 13.4 - Determine the time needed to pull the cord at B...Ch. 13.4 - Cylinder B has a mass m and is hoisted using the...Ch. 13.4 - Block A has a weight of 8 lb and block B has a...Ch. 13.4 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13.4 - The motor lifts the 50-kg crate with an...Ch. 13.4 - The 75-kg man pushes on the 150-kg crate with a...Ch. 13.4 - The coefficient of kinetic friction is k, and the...Ch. 13.4 - A 40-lb suitcase slides from rest 20 ft down the...Ch. 13.4 - Solve Prob. 13-18 if the suitcase has an initial...Ch. 13.4 - If the coefficient of kinetic friction between...Ch. 13.4 - The conveyor belt delivers each 12-kg crate to the...Ch. 13.4 - The 50-kg block A is released from rest. Determine...Ch. 13.4 - If the supplied force F = 150 N, determine the...Ch. 13.4 - A 60-kg suitcase slides from rest 5 m down the...Ch. 13.4 - Solve Prob. 13-24 if the suitcase has an initial...Ch. 13.4 - The 1.5 Mg sports car has a tractive force of F =...Ch. 13.4 - The conveyor belt is moving downward at 4 m/s. If...Ch. 13.4 - At the instant shown the 100-lb block A is moving...Ch. 13.4 - Determine the velocity of the 200-lb crate when t...Ch. 13.4 - Determine the velocity of the 400-kg crate A when...Ch. 13.4 - The tractor is used to lift the 150-kg load B with...Ch. 13.4 - If the tractor travels to the right with an...Ch. 13.4 - Block A and B each have a mass m. Determine the...Ch. 13.4 - The 4-kg smooth cylinder is supported by the...Ch. 13.4 - The coefficient of static friction between the...Ch. 13.4 - If the spring is unstretched when s = 0 and the...Ch. 13.4 - Neglecting the mass of the rope and pulley, and...Ch. 13.4 - Determine the force in the cable when t = 5 s, if...Ch. 13.4 - An electron of mass m is discharged with an...Ch. 13.4 - The 400-lb cylinder at A is hoisted using the...Ch. 13.4 - What is their velocity at this instant?Ch. 13.4 - Block A has a mass mA and is attached to a spring...Ch. 13.4 - A parachutist having a mass m opens his parachute...Ch. 13.4 - Neglect the mass of the motor and pulleys.Ch. 13.4 - If the force exerted on cable AB by the motor is F...Ch. 13.4 - Blocks A and B each have a mass m. Determine the...Ch. 13.4 - Blocks A and Beach have a mass m. Determine the...Ch. 13.4 - If the board AC pushes on the block at an angle ...Ch. 13.4 - If a horizontal force P = 12lb is applied to block...Ch. 13.4 - A freight elevator, including its load, has a mass...Ch. 13.4 - The block A has a mass mA and rests on the pan B,...Ch. 13.5 - P13-5.Set up the n, t axes and write the equations...Ch. 13.5 - P13-6.Set up the n, b, t axes and write the...Ch. 13.5 - The block rests at a distance of 2 m from the...Ch. 13.5 - Prob. 8FPCh. 13.5 - A pilot weighs 150 lb and is traveling at a...Ch. 13.5 - The sports car is traveling along a 30 banked road...Ch. 13.5 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13.5 - The motorcycle has a mass of 0.5 Mg and a...Ch. 13.5 - Prob. 52PCh. 13.5 - Prob. 53PCh. 13.5 - The 2-kg block B and 15-kg cylinder A are...Ch. 13.5 - Determine the maximum constant speed at which the...Ch. 13.5 - Cartons having a mass of 5 kg are required to move...Ch. 13.5 - Prob. 57PCh. 13.5 - Prob. 58PCh. 13.5 - Prob. 59PCh. 13.5 - Prob. 60PCh. 13.5 - At the instant B = 60, the boys center of mass G...Ch. 13.5 - A girl having a mass of 25 kg sits at the edge of...Ch. 13.5 - The pendulum bob B has a weight of 5 lb and is...Ch. 13.5 - The pendulum bob B has a mass m and is released...Ch. 13.5 - Determine the constant speed of the passengers on...Ch. 13.5 - A motorcyclist in a circus rides his motorcycle...Ch. 13.5 - The vehicle is designed to combine the feel of a...Ch. 13.5 - The 0.8-Mg car travels over the hill having the...Ch. 13.5 - The 0.8-Mg car travels over the hill having the...Ch. 13.5 - When it reaches the curved portion AB, it is...Ch. 13.5 - Determine the resultant normal and frictional...Ch. 13.5 - If he rotates about the z axis with a constant...Ch. 13.5 - Determine the maximum speed at which the car with...Ch. 13.5 - Determine the maximum constant speed at which the...Ch. 13.5 - The box has a mass m and slides down the smooth...Ch. 13.5 - Prove that if the block is released from rest at...Ch. 13.5 - The cylindrical plug has a weight of 2 lb and it...Ch. 13.5 - When crossing an intersection, a motorcyclist...Ch. 13.5 - The airplane, traveling at a constant speed of 50...Ch. 13.5 - The 2-kg pendulum bob moves in the vertical plane...Ch. 13.5 - The 2-kg pendulum bob moves in the vertical plane...Ch. 13.5 - If it has a speed of 1.5 m/s when y = 0.2 m,...Ch. 13.5 - The ball has a mass m and is attached to the cord...Ch. 13.6 - If the attached spring has a stiffness k = 2...Ch. 13.6 - Determine the constant angular velocity of the...Ch. 13.6 - If = ( t2) rad, where t is in seconds, determine...Ch. 13.6 - The 2-Mg car is traveling along the curved road...Ch. 13.6 - The 0.2-kg pin P is constrained to move in the...Ch. 13.6 - If the cam is rotating at a constant rate of 6...Ch. 13.6 - Determine the magnitude of the resultant force...Ch. 13.6 - Determine the magnitude of the unbalanced force...Ch. 13.6 - Rod OA rotates counterclockwise with a constant...Ch. 13.6 - The boy of mass 40 kg is sliding down the spiral...Ch. 13.6 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13.6 - The arm is rotating at a rate of = 4 rad/s when ...Ch. 13.6 - If arm OA rotates with a constant clockwise...Ch. 13.6 - Determine the normal and frictional driving forces...Ch. 13.6 - A smooth can C, having a mass of 3 kg, is lifted...Ch. 13.6 - Prob. 96PCh. 13.6 - Prob. 97PCh. 13.6 - The particle has a mass of 0.5 kg and is confined...Ch. 13.6 - A car of a roller coaster travels along a track...Ch. 13.6 - The 0.5-lb ball is guided along the vertical...Ch. 13.6 - The ball of mass misguided along the vertical...Ch. 13.6 - Using a forked rod, a smooth cylinder P, having a...Ch. 13.6 - The pilot of the airplane executes a vertical loop...Ch. 13.6 - The collar has a mass of 2 kg and travels along...Ch. 13.6 - The particle has a mass of 0.5 kg and is confined...Ch. 13.6 - Solve Prob. 13-105 If the arm has an angular...Ch. 13.6 - The forked rod is used to move the smooth 2-lb...Ch. 13.6 - Prob. 108PCh. 13.6 - Rod OA rotates counterclockwise at a constant...Ch. 13.6 - Solve Prob. 13-109 if motion is in the vertical...Ch. 13.7 - If his speed is a constant vP = 80 ft/s, determine...Ch. 13.7 - The earth has an orbit with eccentricity 0.0167...Ch. 13.7 - Prob. 114PCh. 13.7 - Determine the speed of a satellite launched...Ch. 13.7 - Prob. 116PCh. 13.7 - Prove Keplers third law of motion. Hint: Use Eqs....Ch. 13.7 - Prob. 118PCh. 13.7 - Prob. 119PCh. 13.7 - Determine the constant speed of satellite S so...Ch. 13.7 - Prob. 121PCh. 13.7 - Prob. 122PCh. 13.7 - Prob. 123PCh. 13.7 - Prob. 124PCh. 13.7 - The rocket is traveling around the earth in free...Ch. 13.7 - Prob. 127PCh. 13.7 - Prob. 128PCh. 13.7 - Prob. 129PCh. 13.7 - Prob. 130PCh. 13.7 - The rocket is traveling around the earth in free...Ch. 13.7 - Prob. 132PCh. 13.7 - Prob. 3CPCh. 13.7 - If the trailer has a mass of 250 kg and coasts 45...Ch. 13.7 - The coefficient of kinetic friction between the...Ch. 13.7 - Block B rests on a smooth surface. If the...Ch. 13.7 - If the motor draws in the cable at a rate of v =...Ch. 13.7 - The ball has a mass of 30 kg and a speed v = 4 m/s...Ch. 13.7 - If the coefficient of static friction between the...Ch. 13.7 - If at the instant it reaches point A it has a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The spring-held follower AB has a weight of 0.75 lb and moves back and forth as its end rolls on the contoured surface of the cam, where r=0.2 ft and z = (0.1sine) ft. If the cam is rotating at a constant rate of 6 rad/s, determine the force at the end A of the follower when e=90°. In this position the spring is compressed 0.4 ft. Neglect friction at the bearing C. z = 0.1 sin 20 0.2 ft e = 6 rad/s k = 12 lb/ft Fs FA- Tarrow_forwardAt the instant shown, link CD rotates with an angular velocity of @, = 8 rad/s. If link CD is subjected to a couple moment of M= 650 lb- ft, determine the force developed in link AB and the angular acceleration of the links at this instant. Neglect the weight of the links and the platform. The crate weighs 100 lb and is fully secured on the platform. 1 ft 4 ft @CD = 8 rad/s M = 650 lb-ft - 3 ftarrow_forwardA constant couple moment M is acted on the drum O to pull the spool C up the incline. Both drum O and spool C can be treated as uniform disk. If spool C is rolling without slipping, determine the angular acceleration of the drum and the cord force. R R (0 Marrow_forward
- 4. The vehicle is designed to combine the feel of a motorcycle with the comfort and safety of an automobile. If the vehicle is traveling at a constant speed of 80 km/h along a circular curved road of radius 100 m, determine the tilt angle 0 of the vehicle so that only a normal force from the seat acts on the driver. Neglect the size of the driver.arrow_forwardAs in the figure, in an amusement vehicle rotating in the amusement park, the center shaft rotates at a speed of n=9 rpm. Meanwhile, the child is moved with the position equations r = (2 sinθ + 5) m and z = (3 cosθ) m. Find the forces generated in the child in all three axes (r, θ, z). The weight of the child is m = 31 kg. θ=115 degrees at the time the photo was taken.arrow_forwardThe slotted arm OA rotates about a fixed axis through O. At the instant under consideration, θθ = 34°, θ˙θ˙ = 43 deg/s, and θ¨θ¨ = 10 deg/s2. Determine the magnited of the force F applied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.3-kg slider B. Neglect all friction, and let L = 0.88 m. The motion occurs in a vertical plane.arrow_forward
- the disc rolls without slipping and at a given instant, its velocity and angular acceleration is as shown. Pin A is fixed to the disc. determine the reaction at pin A The exercise is shown in the attached imagearrow_forwardAt the instant shown, the spring is undeformed. Determine the change in potential energy if the 20 kg disk (radius of gyration = 0.5 m) rolls 2 revolutions without slipping. Note that the shown velocity vector refers to the translation of the centre of the wheel. Choices are in image.arrow_forward0.8 m The shown spool has a mass of 450 kg and a radius of gyration k, =1.2m. It rests on the surface of conveyer belt for which the coefficient of friction u =0.5. If the conveyer accelerates at1.2m / Sand the spools rolls without slipping, determine the tension in the wire and the angular acceleration of the spool - 1.6 marrow_forward
- The homogeneous, solid cylinder with mass m = 4.8 kg and radius r = 0.24 m rolls along the inclined surface without slipping. If the initial angular velocity is w, = 2 rad/s (counterclockwise), and after a certain time lapse the angular velocity is w2 = 2.2 rad/s (clockwise), determine the magnitude of the linear impulse due to the frictional force during this time period. Let 0 = 46°.arrow_forwardThe uniform square steel plate has a mass of 6 kg and is resting on a smooth horizontal surface in the x-y plane. If a horizontal force P = 127 N is applied to one corner in the direction shown, determine the magnitude of the initial acceleration of corner A. The distance b = 200 mm. Assume 8 = 50°. Answer: dA= i 0 A P m/s²arrow_forwardThe helical path is wound around the circular cylinder with radiusR . The step h= 2*pi*R. The object A is sliding through the path guide under gravity (acting in the negative zdirection). There is no air resistance 1)Draw the force diagrams in (theta ,Z ) plane (tangent to the cylinder) and in( r,theta ) plane. 2) If the initial speed is 0, find the speed after 3 full circles. Given: R, g, m, u.[Hint: Use the work-energy principle.]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY