Introduction to Statistics and Data Analysis
5th Edition
ISBN: 9781305115347
Author: Roxy Peck; Chris Olsen; Jay L. Devore
Publisher: Brooks Cole
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.2, Problem 14E
To determine
Whether it is preferable to consider the observations with x values 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.98 than observations in example 13.3
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose that a kitchen cabinet warehouse company would like to be able to predict the area of a customer’s kitchen using the number of cabinets and the kitchen ceiling height. To do so data is collected on the following variables from a random sample of customers:
Area – area of the kitchen in square feet
Height – ceiling height in the kitchen (from floor to ceiling) in inches
Cabinets – number of cabinets in the kitchen
Suppose that a multiple linear regression model was fit to the data and that the following output resulted:
Coefficients:
(Intercept)HeightCabinets
Estimate-57.98771.2760.3393
Std. Error8.63820.26430.1302
t value -6.7134.8282.607
Pr(>|t|)2.75e-074.44e-050.0145
10
Question 10
This is not a form; we suggest that you use the browse mode and read all parts of the question carefully.
Which of the following is the correct interpretation of the coefficient for Cabinets?
For a kitchen with a given ceiling height, the average number of cabinets…
Suppose that a kitchen cabinet warehouse company would like to be able to predict the area of a customer’s kitchen using the number of cabinets and the kitchen ceiling height. To do so data is collected on the following variables from a random sample of customers:
Area – area of the kitchen in square feet
Height – ceiling height in the kitchen (from floor to ceiling) in inches
Cabinets – number of cabinets in the kitchen
Suppose that a multiple linear regression model was fit to the data and that the following output resulted:
Coefficients:
(Intercept)HeightCabinets
Estimate-57.98771.2760.3393
Std. Error8.63820.26430.1302
t value -6.7134.8282.607
Pr(>|t|)2.75e-074.44e-050.0145
Why is the interpretation of the constant term (i.e. "intercept") not meaningful for this example?
The predicted area will be negative when the number of cabinets is zero and the height of the kitchen is also zero. But we cannot have a negative area, nor a kitchen ceiling height of 0 inches.…
Suppose that a kitchen cabinet warehouse company would like to be able to predict the area of a customer’s kitchen using the number of cabinets and the kitchen ceiling height. To do so data is collected on the following variables from a random sample of customers:
Area – area of the kitchen in square feet
Height – ceiling height in the kitchen (from floor to ceiling) in inches
Cabinets – number of cabinets in the kitchen
Suppose that a multiple linear regression model was fit to the data and that the following output resulted:
Coefficients:
(Intercept)HeightCabinets
Estimate-57.98771.2760.3393
Std. Error8.63820.26430.1302
t value -6.7134.8282.607
Pr(>|t|)2.75e-074.44e-050.0145
What is the predicted area of a kitchen with a height of 96 inches and 10 cabinets? Report your answer to 1 decimal place.
square feet
Chapter 13 Solutions
Introduction to Statistics and Data Analysis
Ch. 13.1 - Prob. 1ECh. 13.1 - The flow rate in a device used for air quality...Ch. 13.1 - The paper Predicting Yolk Height, Yolk Width,...Ch. 13.1 - Prob. 4ECh. 13.1 - Suppose that a simple linear regression model is...Ch. 13.1 - a. Explain the difference between the line y x...Ch. 13.1 - Prob. 7ECh. 13.1 - Hormone replacement therapy (HRT) is thought to...Ch. 13.1 - Prob. 9ECh. 13.1 - A simple linear regression model was used to...
Ch. 13.1 - Consider the accompanying data on x = Advertising...Ch. 13.2 - What is the difference between and b? What is the...Ch. 13.2 - The largest commercial fishing enterprise in the...Ch. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - An experiment to study the relationship between x...Ch. 13.2 - The paper The Effects of Split Keyboard Geometry...Ch. 13.2 - The authors of the paper Decreased Brain Volume in...Ch. 13.2 - Do taller adults make more money? The authors of...Ch. 13.2 - Researchers studying pleasant touch sensations...Ch. 13.2 - Prob. 22ECh. 13.2 - Prob. 23ECh. 13.2 - Consider the accompanying data on x = Research and...Ch. 13.2 - Prob. 25ECh. 13.2 - In anthropological studies, an important...Ch. 13.3 - The graphs accompanying this exercise are based on...Ch. 13.3 - Prob. 28ECh. 13.3 - Prob. 29ECh. 13.3 - The article Vital Dimensions in Volume Perception:...Ch. 13.3 - Prob. 31ECh. 13.3 - An investigation of the relationship between x =...Ch. 13.4 - Prob. 33ECh. 13.4 - Prob. 34ECh. 13.4 - Prob. 35ECh. 13.4 - Prob. 36ECh. 13.4 - A subset of data read from a graph that appeared...Ch. 13.4 - Prob. 38ECh. 13.4 - Prob. 39ECh. 13.4 - Prob. 40ECh. 13.4 - The shelf life of packaged food depends on many...Ch. 13.4 - For the cereal data of the previous exercise, the...Ch. 13.4 - The article Performance Test Conducted for a Gas...Ch. 13.5 - Prob. 44ECh. 13.5 - Prob. 45ECh. 13.5 - A sample of n = 353 college faculty members was...Ch. 13.5 - Prob. 47ECh. 13.5 - Prob. 48ECh. 13.5 - The accompanying summary quantities for x =...Ch. 13.5 - Prob. 50ECh. 13.5 - Prob. 51ECh. 13.6 - Prob. 52ECh. 13 - Prob. 53CRCh. 13 - Prob. 54CRCh. 13 - Prob. 55CRCh. 13 - The article Photocharge Effects in Dye Sensitized...Ch. 13 - Prob. 57CRCh. 13 - Prob. 58CRCh. 13 - Prob. 59CRCh. 13 - Prob. 60CRCh. 13 - Prob. 61CRCh. 13 - The article Improving Fermentation Productivity...Ch. 13 - Prob. 63CRCh. 13 - Prob. 64CRCh. 13 - Prob. 65CRCh. 13 - Prob. 1CRECh. 13 - Prob. 2CRECh. 13 - Prob. 3CRECh. 13 - Prob. 4CRECh. 13 - Prob. 5CRECh. 13 - The accompanying graphical display is similar to...Ch. 13 - Prob. 7CRECh. 13 - Prob. 8CRECh. 13 - Consider the following data on y = Number of songs...Ch. 13 - Many people take ginkgo supplements advertised to...Ch. 13 - Prob. 11CRECh. 13 - Prob. 12CRECh. 13 - Prob. 13CRECh. 13 - Prob. 14CRECh. 13 - The discharge of industrial wastewater into rivers...Ch. 13 - Many people take ginkgo supplements advertised to...Ch. 13 - It is hypothesized that when homing pigeons are...Ch. 13 - Prob. 18CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Olympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardWhat does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forwardThe rental of an apartment (?R) near campus is a function of the square footage (??Sq). A random sample of apartments near campus yielded the following summary statistics: ?¯R¯ = $340, ??¯Sq¯ = 93, ??sR = $ 29.1, and ???sSq= 10.5. Suppose also that the correlation between price and weight is ?r = 0.83. (a) Write the implied least squares linear regression equation. (b) Suppose an apartment has 75 sqft. Predict its price based on the above model. (c) Suppose the true rental of the apartment in part (b) is $ 345. What is the value of the residual?arrow_forward
- Suppose the following data were collected from a sample of 15 houses relating selling price to square footage and the architectural style of the house. Use statistical software to find the following regression equation: PRICEi=b0+b1SQFTi+b2COLONIALi+b3RANCHi+ei . Is there enough evidence to support the claim that on average, houses that are ranch style have lower selling prices than houses that are Victorian style at the 0.05 level of significance? If yes, write the regression equation in the spaces provided with answers rounded to two decimal places. Else, select "There is not enough evidence."Selling Price Square Footage Colonial (1 if house is Colonial style, 0 otherwise) Ranch (1 if house is Ranch style, 0 otherwise) Victorian (1 if house is Victorian style, 0 otherwise) 377640 1941 1 0 0 460996 3397 0 1 0 405781 2764 0 0 1 407216 2906 0 0 1 435139 3401 1 0 0 405275 2600 0 0 1 381141 2203 0 1 0 370490 2046 1 0 0 404070 2210 0 0 1 460196 3692 0 1 0 382780 2172 1 0 0 406466 2606 0 1…arrow_forwardSuppose a commercial developer in Vereeniging consider to purchase a group of small office buildings in an established business district. He uses multiple linear regression analysis, which was based on a sample of 35 office buildings, to estimate the value of an office building in a given area based on the following variables. Y = Assessed value of the office building (in Rand) X1= Floor space in square meters X2= Number of offices X3= Age of the office building in years Answer the questions that follow by typing only the letter of the correct option (A, B, C, D or E) in the answer spaces provided. Variablesy: Valuex1: Floor Spacex2: Officesx3: Age Model Fitting StatisticsR^2 = 0.9752Adj R^2: ? Regression Coefficients Beta Parameter Standard b Parameter Standard Estimates Error of Beta Estimates Error of b t Statistic Prob > |t|Intcpt…arrow_forwardSuppose a doctor measures the height, x, and head circumference, y, of 8 children and obtains the data below. The correlation coefficient is 0.895 and the least squares regression line is y=0.235x+11.045. Height, x 27 25.75 26.75 25 27.25 26.25 26 26.75 27 26.75 26.75 Head Circumference, y 17.4 17.0 17.3 16.9 17.5 17.4 17.2 17.3 17.3 17.3 17.3 Compute the coefficient of determination, R2. R2=nothing% (Round to one decimal place as needed.)arrow_forward
- 9(20 pts). Correlation analysis and Simple Linear Regression. A study is con- ducted with a group of dieters to see if the number of grams of fat each consumes per day, x, is related to cholesterol level y. The data are shown in Spreadsheet "Question 8": Fat Grams x: 6.8 5.5 8.2 10 8.6 9.1 8.6 10.4 5.9 6.3 7.6 8 8.5 7.9 5.9 6.7 9.1 10.1 9.5 8.9 Cholesterol Level y: 212 192 193 263 222 250 190 249 190 185 192 201 215 189 203 194 241 256 255 245 pole sta ber of of perm lity o n = 20, Στ = 161.6, y = 216.85, Σ Υ = 4337, = 8.08, Σν = 955159. Στ? = 1347.52, Σ y = 35671.5, (a) Compute the value of the correlation coefficient, r, between x and y. (b) Test if the population correlation coefficient p > 0.5 at a = 0.05. (c) Determine the regression line equation y' = a + bx. (d) Predict the cholesterol level of a dieter who consumes x = 8.5 grams of fat per day. (e) Find the 90% prediction interval of the cholesterol level of a person who consumes x=8.5 grams of fat per day. at mo 9 mally tribu…arrow_forwardStoaches are fictional creatures that nest in truffula forests. A researcher wants to know whether there is a relationship between a stoach’s wingspan (?W, the predictor) and its nest height (?H, the response). A sample of 88 stoaches is observed, and for each, the wing-span (in cm) and the nest height (in m) are recorded. The observed data meet the assumptions for a linear regression, so the researcher fits the regression model and obtains a regression equation ℎ̂=−0.813+0.177?,h^=−0.813+0.177w, with standard error for the coefficient of ?w equal to 0.448. Determine the ?p-value from a test for a statistically significant linear dependence of nest height on wing-span. (Give your answer to 4 decimal places.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY