Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.1, Problem 13.1CE
How could the data in Table 13.2 be used to predict the solubility in water of 1-octanol or 1-decanol?
Table 13.2 Solubilities of Alcohols in Water, 20°C
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
how do i determine water solubility for each one?
1. Consider the solubility and boiling point of the following pair of compounds: n-butyl alcohol and diethyl ether. The boiling points for the compounds are 118 °C and 35 °C respectively. The solubility for both compounds is the same (8g/100g water). Explain this observation for (i) boiling point disparity; (ii) solubility similarity
a. H-bonds form in diethyl ether; n-butyl alcohol forms H-bonds in water
b. H-bonds form in n-butyl alcohol; diethyl ether forms H-bonds in water
c. H-bonds in n-butyl alcohol; Both compounds form H-bonds in water
d. Both compounds form H-bonds; Both compounds form H-bonds in water
2. Account for the bond angle differences between (i) H-C-H (109.5°) in methane and H-S-H (90°); H-C-H (109.5°) and H-O-H (107.5°) in water.
a. The H-S-H has two lone pairs; The H-O-H has two lone pairs
b. The H-S-H has no hybridization at p-orbitals; The H-O-H has two lone pairs
c. The H-S-H has two lone pairs; The H-O-H has no hybridization…
Description
Solubility in
water (+/-)
Sample
Skeletal Structure
(i.e., physical state, odor,
clarity and color)
Ethanol
1-Butanol
Cyclohexanol
Isoamyl
alcohol
Phenoliolpgy Environmental Science
Explain in 2 – 3 sentences the solubility of alcohols and phenols in water.
Chapter 13 Solutions
Chemistry: The Molecular Science
Ch. 13.1 - How could the data in Table 13.2 be used to...Ch. 13.1 - Prob. 13.2CECh. 13.1 - Prob. 13.1PSPCh. 13.1 - Prob. 13.2PSPCh. 13.2 - Prob. 13.3ECh. 13.2 - Determine whether each of these masses of NH4Cl...Ch. 13.4 - Prob. 13.5CECh. 13.4 - Explain why water that has been used to cool a...Ch. 13.4 - If a substance has a positive enthalpy of...Ch. 13.5 - Suppose that a trout stream at 25 C is in...
Ch. 13.6 - Prob. 13.4PSPCh. 13.6 - Prob. 13.8ECh. 13.6 - Drinking water may contain small quantities of...Ch. 13.6 - Prob. 13.9CECh. 13.6 - A 500-mL bottle of Evian bottled water contains 12...Ch. 13.6 - The mass fraction of gold in seawater is 1 103...Ch. 13.6 - Prob. 13.6PSPCh. 13.6 - Prob. 13.7PSPCh. 13.6 - Prob. 13.8PSPCh. 13.6 - Prob. 13.9PSPCh. 13.6 - Prob. 13.12ECh. 13.6 - Prob. 13.13CECh. 13.7 - The vapor pressure of an aqueous solution of urea....Ch. 13.7 - Prob. 13.14ECh. 13.7 - Prob. 13.15ECh. 13.7 - Prob. 13.11PSPCh. 13.7 - Suppose that you are closing a cabin in the north...Ch. 13.7 - A student determines the freezing point to be 5.15...Ch. 13.7 - Prob. 13.17CECh. 13.7 - Prob. 13.13PSPCh. 13.9 - Prob. 13.18CECh. 13.10 - Prob. 13.19ECh. 13.10 - Prob. 13.20ECh. 13 - Prob. 1QRTCh. 13 - Prob. 2QRTCh. 13 - Prob. 3QRTCh. 13 - Prob. 4QRTCh. 13 - Prob. 5QRTCh. 13 - Prob. 6QRTCh. 13 - Prob. 7QRTCh. 13 - Prob. 8QRTCh. 13 - Prob. 9QRTCh. 13 - Prob. 10QRTCh. 13 - Prob. 11QRTCh. 13 - Prob. 12QRTCh. 13 - Prob. 13QRTCh. 13 - Prob. 14QRTCh. 13 - Beakers (a), (b), and (c) are representations of...Ch. 13 - Prob. 16QRTCh. 13 - Simple acids such as formic acid, HCOOH, and...Ch. 13 - Prob. 18QRTCh. 13 - Prob. 19QRTCh. 13 - Prob. 20QRTCh. 13 - Prob. 21QRTCh. 13 - Prob. 22QRTCh. 13 - Prob. 23QRTCh. 13 - Prob. 24QRTCh. 13 - Prob. 25QRTCh. 13 - Prob. 26QRTCh. 13 - Refer to Figure 13.10 ( Sec. 13-4b) to answer...Ch. 13 - Prob. 28QRTCh. 13 - Prob. 29QRTCh. 13 - Prob. 30QRTCh. 13 - The Henrys law constant for nitrogen in blood...Ch. 13 - Prob. 32QRTCh. 13 - Prob. 33QRTCh. 13 - Prob. 34QRTCh. 13 - Prob. 35QRTCh. 13 - Prob. 36QRTCh. 13 - Prob. 37QRTCh. 13 - Prob. 38QRTCh. 13 - Prob. 39QRTCh. 13 - Prob. 40QRTCh. 13 - A sample of water contains 0.010 ppm lead ions,...Ch. 13 - Prob. 42QRTCh. 13 - Prob. 43QRTCh. 13 - Prob. 44QRTCh. 13 - Prob. 45QRTCh. 13 - Prob. 46QRTCh. 13 - Prob. 47QRTCh. 13 - Prob. 48QRTCh. 13 - Prob. 49QRTCh. 13 - Prob. 50QRTCh. 13 - Consider a 13.0% solution of sulfuric acid,...Ch. 13 - You want to prepare a 1.0 mol/kg solution of...Ch. 13 - Prob. 53QRTCh. 13 - Prob. 54QRTCh. 13 - Prob. 55QRTCh. 13 - A 12-oz (355-mL) Pepsi contains 38.9 mg...Ch. 13 - Prob. 57QRTCh. 13 - Prob. 58QRTCh. 13 - Prob. 59QRTCh. 13 - Prob. 60QRTCh. 13 - Prob. 61QRTCh. 13 - Prob. 62QRTCh. 13 - Prob. 63QRTCh. 13 - Prob. 64QRTCh. 13 - Prob. 65QRTCh. 13 - Prob. 66QRTCh. 13 - Calculate the boiling point and the freezing point...Ch. 13 - Prob. 68QRTCh. 13 - Prob. 69QRTCh. 13 - Prob. 70QRTCh. 13 - Prob. 71QRTCh. 13 - Prob. 72QRTCh. 13 - The freezing point of p-dichlorobenzene is 53.1 C,...Ch. 13 - Prob. 74QRTCh. 13 - Prob. 75QRTCh. 13 - A 1.00 mol/kg aqueous sulfuric acid solution,...Ch. 13 - Prob. 77QRTCh. 13 - Prob. 78QRTCh. 13 - Prob. 79QRTCh. 13 - Prob. 80QRTCh. 13 - Prob. 81QRTCh. 13 - Differentiate between the dispersed phase and the...Ch. 13 - Prob. 83QRTCh. 13 - Prob. 84QRTCh. 13 - Prob. 85QRTCh. 13 - Prob. 86QRTCh. 13 - Prob. 87QRTCh. 13 - Prob. 88QRTCh. 13 - Prob. 89QRTCh. 13 - Prob. 90QRTCh. 13 - Prob. 91QRTCh. 13 - Prob. 92QRTCh. 13 - Prob. 93QRTCh. 13 - Prob. 94QRTCh. 13 - Prob. 95QRTCh. 13 - Prob. 96QRTCh. 13 - Prob. 97QRTCh. 13 - Prob. 98QRTCh. 13 - Prob. 99QRTCh. 13 - Prob. 100QRTCh. 13 - Prob. 101QRTCh. 13 - Prob. 102QRTCh. 13 - In The Rime of the Ancient Mariner the poet Samuel...Ch. 13 - Prob. 104QRTCh. 13 - Prob. 105QRTCh. 13 - Calculate the molality of a solution made by...Ch. 13 - Prob. 107QRTCh. 13 - Prob. 108QRTCh. 13 - Prob. 109QRTCh. 13 - Prob. 110QRTCh. 13 - The organic salt [(C4H9)4N][ClO4] consists of the...Ch. 13 - A solution, prepared by dissolving 9.41 g NaHSO3...Ch. 13 - A 0.250-M sodium sulfate solution is added to a...Ch. 13 - Prob. 114QRTCh. 13 - Prob. 115QRTCh. 13 - Prob. 116QRTCh. 13 - Prob. 117QRTCh. 13 - Prob. 118QRTCh. 13 - Prob. 119QRTCh. 13 - Refer to Figure 13.10 ( Sec. 13-4b) to determine...Ch. 13 - Prob. 121QRTCh. 13 - Prob. 122QRTCh. 13 - Prob. 123QRTCh. 13 - Prob. 124QRTCh. 13 - In your own words, explain why (a) seawater has a...Ch. 13 - Prob. 126QRTCh. 13 - Prob. 127QRTCh. 13 - Prob. 128QRTCh. 13 - Prob. 129QRTCh. 13 - Prob. 130QRTCh. 13 - Prob. 131QRTCh. 13 - A 0.109 mol/kg aqueous solution of formic...Ch. 13 - Prob. 133QRTCh. 13 - Maple syrup sap is 3% sugar (sucrose) and 97%...Ch. 13 - Prob. 137QRTCh. 13 - Prob. 13.ACPCh. 13 - Prob. 13.BCPCh. 13 - Prob. 13.CCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Please help me how to solve this question. Thank you very mucharrow_forwardWrite the skeletal structures of propanal, acetone and cyclohexanone. What is the major intermolecular force (IMF) found in them? Based on their major intermolecular force and molecular weight, what can you predict on their solubility in water? Chemical Name Skeletal Structures Major IMF Solubility in water Propanal Acetone Cyclohexanonearrow_forwardThe disinfection of drinking water to control microbial contaminants can form chemical disinfection byproducts. These compounds result from the reaction of chlorine with naturally occurring organic matter (the dissolved molecules that give natural water the yellow-greenish color). One class of disinfection byproducts is the malodorous and unpalatable chlorophenols. 2,4-dichlorophenol is one compound of this class. a) Calculate the vapor pressure p*L of 2,4-dichlorophenol at 60 °C using Tb and structural information only OH .CI M, = 163.0 g/mol Tm = 43.7 °C Tp = 213.0°C %3D %3D %3Darrow_forward
- Using the relationship between the structure and the boiling point. Obtain a table for the listed chemicals below showing how the boiling point will be different with (1) the different chemical structures, (2) with different functional groups. Boiling Point and Functionalized Compounds: Chemical: Cyclohexanol Cyclohexanone Cyclohexene Benzaldehyde Benzyl alcoholarrow_forwardHow can we predict if 1- propanol is mixed with distilled water? Are the mass and volume conserved? When you mix two gases what can we predict about the conservation of volume in this case?arrow_forward10 Regarding t-butanol and n-butanol, which is/ are correct statements of the following: |- Both are having equal solubility in water Il- t-butanol is more soluble in water than n- butanol III- Boiling point of t-butanol is lower than n-butanol IV- Boiling point of n-butanol is lower than t-butanol * Only I Only II Only II Il & II III & IVarrow_forward
- explain why on addition of 1 mol of NaCl to 1 litre of water, the boiling point of water increases, while addition of 1 mol of methyl alcohol to one litre of water decreases its boiling point.arrow_forwardArrange these compounds in order of increasing solubility in water. HO. Cl. НО Cl 1-Butanol 1-Propanol 1,2-Dichloroethanearrow_forwardWhat structural feature(s) do ethanol and 1-decanol have in common? State a reason for the observed solubility patterns of ethanol and 1-decanol in water and hexane. What structural feature(s) do toluene and naphthalene have in common? You can goggle the chemical structure. State a reason for the observed solubility patterns of toluene and naphthalene in water and hexane.arrow_forward
- a) Succinimide is an organic compound used in many syntheses as a building block and is related to a class of drugs known as anticonvulsants. Given the following solubility of succinimide in water and methanol, which would be a better solvent for recrystallizing succinimide? Solubility data: 1 gram of succinimide is soluble in 5 mL of cold water, 3 mL of water at room temperature and 0.7 mL of boiling water. 1 gram of succinimide is soluble in 30 mL of cold methanol, 24 mL of room temperature methanol and 5 mL of hot methanol. Show calculations.b) A researcher wanted to purify 0.4 grams of crude succinimide via recrystallization using only 2 mL of solvent. Decide the best solvent to use (water or methanol) to show the maximum % recovery of the researcher. The best solvent chosen here, may differ from the one chosen in part a.arrow_forward1. Write the skeletal structures of propanal, acetone and cyclohexanone. What is the major intermolecular force (IMF) found in them? Based on their major intermolecular force and molecular weight, what can you predict on their solubility in water? Chemical Name Skeletal Structures Major IMF Solubility in water Propanal Acetone Cyclohexanone 2. What is the purpose of Tollens’ test (Part B)? What is the evidence of a positive result? 3. What is the purpose of oxidation test (Part C)? What is the evidence of a positive result?arrow_forwardJustify the solubility of the samples in the corresponding solvent based on their structure. Sample water 5% NaHCO3 5% HCl 5%NaOH Conc. H2SO4 ether Aniline n-butyl amine Acetic acid Phenol cyclohexanol 2-Propanol Benzoic acid bromobenzene Ethylene glycolarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoMacroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks Cole
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Macroscale and Microscale Organic Experiments
Chemistry
ISBN:9781305577190
Author:Kenneth L. Williamson, Katherine M. Masters
Publisher:Brooks Cole
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY