(a)
Interpretation:
Nanoscale diagram for the contents of a beaker containing water and ethanol has to be drawn.
Concept introduction:
Like dissolves like principle: ‘Like dissolves like’ principle says that polar compounds including ionic compound should be more soluble in polar solvent. Likewise, non–polar compound should be more soluble in non–polar solvent.
Polar molecule: Polar molecules have large dipole moments.
Non-Polar molecules: Non-polar molecules have bonded atoms with similar electronegativity results to have zero dipole moments.
Solubility is the quantity of solute (solid, liquid or gas) that will dissolve in a given amount of solvent (solid, liquid or gas) at definite temperature and pressure. Solubility depends on the physical and chemical property of solvent, solute and concentration of the solution.
(b)
Interpretation:
Nanoscale diagram for the contents of a beaker containing Carbon tetrachloride and water has to be drawn.
Concept introduction:
Like dissolves like principle: ‘Like dissolves like’ principle says that polar compounds including ionic compound should be more soluble in polar solvent. Likewise, non–polar compound should be more soluble in non–polar solvent.
Polar molecule: Polar molecules have large dipole moments.
Non-Polar molecules: Non-polar molecules have bonded atoms with similar electronegativity results to have zero dipole moments.
Solubility is the quantity of solute (solid, liquid or gas) that will dissolve in a given amount of solvent (solid, liquid or gas) at definite temperature and pressure. Solubility depends on the physical and chemical property of solvent, solute and concentration of the solution.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Chemistry: The Molecular Science
- Please provide steps to work for complete understanding.arrow_forwardPlease provide steps to work for complete understanding.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- Identify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- A certain chemical reaction releases 24.7 kJ/g of heat for each gram of reactant consumed. How can you calculate what mass of reactant will produce 1460. J of heat? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols. mass M 0.0 x μ 00 1 Garrow_forwardPlease don't used hand raiting and don't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning