
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 8P
The chapter text describes various materials that have been used to produce casting patterns (i.e., the tooling that is used to produce molds), including Styrofoam, soft woods, hard woods, epoxy/urethane polymers, aluminum, and iron. For each of these materials, briefly discuss the pros and cons, considering such factors as: number of castings to be produced, the size and shape of the casting, the desired precision of the cast product, pattern cost, dimensional stability (both wear and environmental factors such as temperature and humidity), susceptibility to damage, ability to be repaired or refurbished, process limitations, and storage concerns.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
answer this as soon as possible, please.
A piston–cylinder device contains 50 kg of water at 250 kPa and 25°C. The cross-sectional area of the piston is 0.1 m2. Heat is now transferred to the water, causing part of it to evaporate and expand. When the volume reaches 0.26 m3, the piston reaches a linear spring whose spring constant is 100 kN/m. More heat is transferred to the water until the piston rises 20 cm more.
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
Determine the work done during this process.
The work done during this process is kJ.
A 4-m × 5-m × 7-m room is heated by the radiator of a steam-heating system. The steam radiator transfers heat at a rate of 10,000 kJ/h, and a 100-W fan is used to distribute the warm air in the room. The rate of heat loss from the room is estimated to be about 5000 kJ/h. If the initial temperature of the room air is 10°C, determine how long it will take for the air temperature to rise to 25°C. Assume constant specific heats at room temperature. The gas constant of air is R = 0.287 kPa·m3/kg·K (Table A-1). Also, cv = 0.718 kJ/kg·K for air at room temperature (Table A-2).
Steam enters the radiator system through an inlet outside the room and leaves the system through an outlet on the same side of the room. The fan is labeled as W sub p w. The heat is given off by the whole system consisting of room, radiator and fan at the rate of 5000 kilojoules per hour.
It will take 831 Numeric ResponseEdit Unavailable. 831 incorrect.s for the air temperature to rise to 25°C.
Chapter 13 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 13 - What are the six activities that are conducted on...Ch. 13 - What is materials processing?Ch. 13 - What are the five basic families of...Ch. 13 - Describe the capabilities of the casting process...Ch. 13 - What are some of the various mold materials and...Ch. 13 - How might the desired production quantity...Ch. 13 - Why is it important to provide a means of venting...Ch. 13 - What types of problem or defect can occur if the...Ch. 13 - Why might product removal be less of a problem...Ch. 13 - What is a casting pattern? Flask? Core? Mold...
Ch. 13 - In a horizontally parted two-part mold, what is...Ch. 13 - What are some of the components that combine to...Ch. 13 - What is a parting line or parting surface?Ch. 13 - What is draft, and why is it used?Ch. 13 - Why is it important to control the solidification...Ch. 13 - What are the two stages of solidification, and...Ch. 13 - Why is it that most solidification does not begin...Ch. 13 - Why might it be desirable to promote nucleation in...Ch. 13 - Nucleation generally begins at preferred sites...Ch. 13 - Why might directional solidification be desirable...Ch. 13 - Describe some of the key features observed in the...Ch. 13 - What is superheat?Ch. 13 - Prob. 23RQCh. 13 - What is a liquidus temperature? A solidus...Ch. 13 - What is the freezing range for a metal or alloy?Ch. 13 - Discuss the roles of casting volume and surface...Ch. 13 - What characteristics of a specific casting process...Ch. 13 - What is the correlation between cooling rate and...Ch. 13 - What is the chill zone of a casting, and why does...Ch. 13 - Which of the three regions of a cast structure is...Ch. 13 - What is dross or slag, and how can it be prevented...Ch. 13 - What are some of the possible approaches that can...Ch. 13 - What is a misrun or cold shut, and what causes...Ch. 13 - What is fluidity, and how can it be measured?Ch. 13 - What is the most important factor controlling the...Ch. 13 - What defect can form in sand castings if the...Ch. 13 - Why is it important to design the geometry of the...Ch. 13 - Why might it be preferable to attach gates to the...Ch. 13 - Prob. 39RQCh. 13 - What are some desirable features in the sprue...Ch. 13 - What is a choke, and how does its placement affect...Ch. 13 - What features can be incorporated into the gating...Ch. 13 - What are some of the materials and designs of...Ch. 13 - What factors might influence the positioning of...Ch. 13 - What features of the metal being cast tend to...Ch. 13 - What are the three stages of contraction or...Ch. 13 - Why is it more difficult to prevent shrinkage...Ch. 13 - What steps can be taken to compensate for the...Ch. 13 - During what stage of shrinkage might hot tears...Ch. 13 - What is the role of a riser?Ch. 13 - Why is it desirable to design a casting to have...Ch. 13 - What is yield, and how does it relate to the...Ch. 13 - Based on Chvorinovs rule, what would be an ideal...Ch. 13 - Define the following riser-related terms: top...Ch. 13 - What assumptions were made when using Chvorinovs...Ch. 13 - Discuss aspects relating to the connection between...Ch. 13 - What is the purpose of a chill? Of an insulating...Ch. 13 - What are some materials that are commonly used to...Ch. 13 - What types of modifications or allowances are...Ch. 13 - Prob. 60RQCh. 13 - What is the purpose of a draft or taper on pattern...Ch. 13 - Why is it desirable to make the pattern allowances...Ch. 13 - What additional adjustment or correction must be...Ch. 13 - What are some of the features of the casting...Ch. 13 - Prob. 65RQCh. 13 - What are some design recommendations for inside...Ch. 13 - What are some appearance considerations in parting...Ch. 13 - Prob. 68RQCh. 13 - Prob. 69RQCh. 13 - Using Chvorinovs rule as presented in the text...Ch. 13 - Reposition the riser in Problem 1 so that it sits...Ch. 13 - A rectangular casting having the dimensions 3 in....Ch. 13 - A cylinder with a diameter of 2.5 in. and a height...Ch. 13 - Figure 13.Ashows the wall profile of a cast iron...Ch. 13 - Investigate various experimental techniques to...Ch. 13 - Porosity within a casting can be either...Ch. 13 - The chapter text describes various materials that...Ch. 13 - What is the most likely source of the gas bubbles?...Ch. 13 - What factors may have caused the penetration...Ch. 13 - Prob. 3CSCh. 13 - Prob. 4CSCh. 13 - Prob. 5CS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A piston–cylinder device contains 50 kg of water at 250 kPa and 25°C. The cross-sectional area of the piston is 0.1 m2. Heat is now transferred to the water, causing part of it to evaporate and expand. When the volume reaches 0.26 m3, the piston reaches a linear spring whose spring constant is 100 kN/m. More heat is transferred to the water until the piston rises 20 cm more. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the final pressure and temperature. The final pressure is kPa. The final temperature is ºC. Find the work done during the processarrow_forwardA garden hose attached with a nozzle is used to fill a 20-gal bucket. The inner diameter of the hose is 1 in and it reduces to 0.53 in at the nozzle exit. The average velocity in the hose is 8 ft/s and the density of water is 62.4 lbm/ft3. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the volume and mass flow rates of water through the hose. The volume flow rate of water through the hose is ft3/s. The mass flow rate of water through the hose is lbm/s. The change in time? What is the exit velocity?arrow_forwardA 23-ft3 rigid tank initially contains saturated refrigerant-134a vapor at 160 psia. As a result of heat transfer from the refrigerant, the pressure drops to 50 psia. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the final temperature. Use data from refrigerant tables. The final temperature is ºF.arrow_forward
- A 23-ft3 rigid tank initially contains saturated refrigerant-134a vapor at 160 psia. As a result of heat transfer from the refrigerant, the pressure drops to 50 psia. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the heat transfer. The heat transfer is Btu.arrow_forwardThe shaft shown in the figure below is subjected to axial loads as illustrated. The diameters of segments AB, BC, and CD are 20mm, 25mm, and 15mm, respectively. If the modulus of elasticity of the material is 610 MPa. Determine the change of A to D lengtharrow_forwardDetermine the final pressure and temperature. The final pressure is kPa. The final temperature is ºC.arrow_forward
- Air enters the 1-m2 inlet of an aircraft engine at 100 kPa and 20°C with a velocity of 184 m/s. Determine the volume flow rate, in m3/s, at the engine’s inlet and the mass flow rate, in kg/s, at the engine’s exit. The gas constant of air is R = 0.287 kPa·m3/kg·K. The volume flow rate at the engine’s inlet m3/s. The mass flow rate at the engine’s exit is kg/s.arrow_forwardThe ventilating fan of the bathroom of a building has a volume flow rate of 33 L/s and runs continuously. If the density of air inside is 1.20 kg/m3, determine the mass of air vented out in one day. The mass of air is kg.arrow_forwardA steady-flow compressor is used to compress helium from 15 psia and 70°F at the inlet to 200 psia and 600°F at the outlet. The outlet area and velocity are 0.01 ft2 and 100 ft/s, respectively, and the inlet velocity is 53 ft/s. Determine the mass flow rate and the inlet area. The gas constant of helium is R = 2.6809 psia·ft3/lbm·R. The mass flow rate is lbm/s. The inlet area is ft2.arrow_forward
- 1. The maximum and minimum stresses as well as the shear stress seen subjected the piece in plane A-A. Assume it is a cylinder with a diameter of 12.7mm 2. Draw the Mohr circle for the stress state using software. 3. Selection of the material for the prosthesis, which must be analyzed from the point of safety and cost view.arrow_forwardMarrow_forward× Your answer is incorrect. (Manometer) Determine the angle 0 of the inclined tube shown in figure below if the pressure at A is 1 psi greater than that at B. 1ft SG=0.61 十 A Ꮎ 1ft SG=1.0 8.8 ft 0 = Hi 15.20 deg Airarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Casting Metal: the Basics; Author: Casting the Future;https://www.youtube.com/watch?v=2CIcvB72dmk;License: Standard youtube license