
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 52RQ
What is “yield,” and how does it relate to the number and size of risers?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem (17): water flowing in an open channel of a rectangular cross-section with width (b) transitions from a
mild slope to a steep slope (i.e., from subcritical to supercritical flow) with normal water depths of (y₁) and
(y2), respectively.
Given the values of y₁ [m], y₂ [m], and b [m], calculate the discharge in the channel (Q) in [Lit/s].
Givens:
y1 = 4.112 m
y2 =
0.387 m
b = 0.942 m
Answers:
( 1 ) 1880.186 lit/s
( 2 ) 4042.945 lit/s
( 3 ) 2553.11 lit/s
( 4 ) 3130.448 lit/s
Problem (14): A pump is being used to lift water from an underground
tank through a pipe of diameter (d) at discharge (Q). The total head
loss until the pump entrance can be calculated as (h₁ = K[V²/2g]), h
where (V) is the flow velocity in the pipe. The elevation difference
between the pump and tank surface is (h).
Given the values of h [cm], d [cm], and K [-], calculate the maximum
discharge Q [Lit/s] beyond which cavitation would take place at the
pump entrance. Assume Turbulent flow conditions.
Givens:
h = 120.31 cm
d = 14.455 cm
K = 8.976
Q
Answers:
(1) 94.917 lit/s
(2) 49.048 lit/s
( 3 ) 80.722 lit/s
68.588 lit/s
4
Problem (13): A pump is being used to lift water from the bottom
tank to the top tank in a galvanized iron pipe at a discharge (Q).
The length and diameter of the pipe section from the bottom tank
to the pump are (L₁) and (d₁), respectively. The length and
diameter of the pipe section from the pump to the top tank are
(L2) and (d2), respectively.
Given the values of Q [L/s], L₁ [m], d₁ [m], L₂ [m], d₂ [m],
calculate total head loss due to friction (i.e., major loss) in the
pipe (hmajor-loss) in [cm].
Givens:
L₁,d₁
Pump
L₂,d2
오
0.533 lit/s
L1 =
6920.729 m
d1 =
1.065 m
L2 =
70.946 m
d2
0.072 m
Answers:
(1)
3.069 cm
(2) 3.914 cm
( 3 ) 2.519 cm
( 4 ) 1.855 cm
TABLE 8.1
Equivalent Roughness for New Pipes
Pipe
Riveted steel
Concrete
Wood stave
Cast iron
Galvanized iron
Equivalent Roughness, &
Feet
Millimeters
0.003-0.03 0.9-9.0
0.001-0.01 0.3-3.0
0.0006-0.003 0.18-0.9
0.00085
0.26
0.0005
0.15
0.045
0.000005
0.0015
0.0 (smooth) 0.0 (smooth)
Commercial steel or wrought iron 0.00015
Drawn…
Chapter 13 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 13 - What are the six activities that are conducted on...Ch. 13 - What is materials processing?Ch. 13 - What are the five basic families of...Ch. 13 - Describe the capabilities of the casting process...Ch. 13 - What are some of the various mold materials and...Ch. 13 - How might the desired production quantity...Ch. 13 - Why is it important to provide a means of venting...Ch. 13 - What types of problem or defect can occur if the...Ch. 13 - Why might product removal be less of a problem...Ch. 13 - What is a casting pattern? Flask? Core? Mold...
Ch. 13 - In a horizontally parted two-part mold, what is...Ch. 13 - What are some of the components that combine to...Ch. 13 - What is a parting line or parting surface?Ch. 13 - What is draft, and why is it used?Ch. 13 - Why is it important to control the solidification...Ch. 13 - What are the two stages of solidification, and...Ch. 13 - Why is it that most solidification does not begin...Ch. 13 - Why might it be desirable to promote nucleation in...Ch. 13 - Nucleation generally begins at preferred sites...Ch. 13 - Why might directional solidification be desirable...Ch. 13 - Describe some of the key features observed in the...Ch. 13 - What is superheat?Ch. 13 - Prob. 23RQCh. 13 - What is a liquidus temperature? A solidus...Ch. 13 - What is the freezing range for a metal or alloy?Ch. 13 - Discuss the roles of casting volume and surface...Ch. 13 - What characteristics of a specific casting process...Ch. 13 - What is the correlation between cooling rate and...Ch. 13 - What is the chill zone of a casting, and why does...Ch. 13 - Which of the three regions of a cast structure is...Ch. 13 - What is dross or slag, and how can it be prevented...Ch. 13 - What are some of the possible approaches that can...Ch. 13 - What is a misrun or cold shut, and what causes...Ch. 13 - What is fluidity, and how can it be measured?Ch. 13 - What is the most important factor controlling the...Ch. 13 - What defect can form in sand castings if the...Ch. 13 - Why is it important to design the geometry of the...Ch. 13 - Why might it be preferable to attach gates to the...Ch. 13 - Prob. 39RQCh. 13 - What are some desirable features in the sprue...Ch. 13 - What is a choke, and how does its placement affect...Ch. 13 - What features can be incorporated into the gating...Ch. 13 - What are some of the materials and designs of...Ch. 13 - What factors might influence the positioning of...Ch. 13 - What features of the metal being cast tend to...Ch. 13 - What are the three stages of contraction or...Ch. 13 - Why is it more difficult to prevent shrinkage...Ch. 13 - What steps can be taken to compensate for the...Ch. 13 - During what stage of shrinkage might hot tears...Ch. 13 - What is the role of a riser?Ch. 13 - Why is it desirable to design a casting to have...Ch. 13 - What is yield, and how does it relate to the...Ch. 13 - Based on Chvorinovs rule, what would be an ideal...Ch. 13 - Define the following riser-related terms: top...Ch. 13 - What assumptions were made when using Chvorinovs...Ch. 13 - Discuss aspects relating to the connection between...Ch. 13 - What is the purpose of a chill? Of an insulating...Ch. 13 - What are some materials that are commonly used to...Ch. 13 - What types of modifications or allowances are...Ch. 13 - Prob. 60RQCh. 13 - What is the purpose of a draft or taper on pattern...Ch. 13 - Why is it desirable to make the pattern allowances...Ch. 13 - What additional adjustment or correction must be...Ch. 13 - What are some of the features of the casting...Ch. 13 - Prob. 65RQCh. 13 - What are some design recommendations for inside...Ch. 13 - What are some appearance considerations in parting...Ch. 13 - Prob. 68RQCh. 13 - Prob. 69RQCh. 13 - Using Chvorinovs rule as presented in the text...Ch. 13 - Reposition the riser in Problem 1 so that it sits...Ch. 13 - A rectangular casting having the dimensions 3 in....Ch. 13 - A cylinder with a diameter of 2.5 in. and a height...Ch. 13 - Figure 13.Ashows the wall profile of a cast iron...Ch. 13 - Investigate various experimental techniques to...Ch. 13 - Porosity within a casting can be either...Ch. 13 - The chapter text describes various materials that...Ch. 13 - What is the most likely source of the gas bubbles?...Ch. 13 - What factors may have caused the penetration...Ch. 13 - Prob. 3CSCh. 13 - Prob. 4CSCh. 13 - Prob. 5CS
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Sum of Numbers Assume a file containing a series of integers is named numbers.txt and exists on the computers d...
Starting Out with Python (4th Edition)
Express the force as a Cartesian vector. Prob. F2-15
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Write a program in Vole to compute the sum of floating-point values stored at memory locations 0xA0, 0xA1, 0xA2...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
ICA 2-1
For each of the following situations, indicate whether you think the action is ethical or unethical or ...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
A loading causes the member to deform into the dashed shape. Explain how to determine the normal strains CD and...
Mechanics of Materials (10th Edition)
Big data Big data describes datasets with huge volumes that are beyond the ability of typical database manageme...
Management Information Systems: Managing The Digital Firm (16th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The flow rate is 12.275 Liters/s and the diameter is 6.266 cm.arrow_forwardAn experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (20): Given the value of APm/Lm [kPa/m], and assuming pressure coefficient similitude, calculate the drop in the pressure per unit length of the water main (APP/Lp) in [Pa/m]. Givens: AP M/L m = 590.637 kPa/m meen Answers: ( 1 ) 59.369 Pa/m ( 2 ) 73.83 Pa/m (3) 95.443 Pa/m ( 4 ) 44.444 Pa/m *******arrow_forwardFind the reaction force in y if Ain = 0.169 m^2, Aout = 0.143 m^2, p_in = 0.552 atm, Q = 0.367 m^3/s, α = 31.72 degrees. The pipe is flat on the ground so do not factor in weight of the pipe and fluid.arrow_forward
- Find the reaction force in x if Ain = 0.301 m^2, Aout = 0.177 m^2, p_in = 1.338 atm, Q = 0.669 m^3/s, and α = 37.183 degreesarrow_forwardProblem 5: Three-Force Equilibrium A structural connection at point O is in equilibrium under the action of three forces. • • . Member A applies a force of 9 kN vertically upward along the y-axis. Member B applies an unknown force F at the angle shown. Member C applies an unknown force T along its length at an angle shown. Determine the magnitudes of forces F and T required for equilibrium, assuming 0 = 90° y 9 kN Aarrow_forwardProblem 19: Determine the force in members HG, HE, and DE of the truss, and state if the members are in tension or compression. 4 ft K J I H G B C D E F -3 ft -3 ft 3 ft 3 ft 3 ft- 1500 lb 1500 lb 1500 lb 1500 lb 1500 lbarrow_forward
- Problem 14: Determine the reactions at the pin A, and the tension in cord. Neglect the thickness of the beam. F1=26kN F2 13 12 80° -2m 3marrow_forwardProblem 22: Determine the force in members GF, FC, and CD of the bridge truss and state if the members are in tension or compression. F 15 ft B D -40 ft 40 ft -40 ft 40 ft- 5 k 10 k 15 k 30 ft Earrow_forwardProblem 20: Determine the force in members BC, HC, and HG. After the truss is sectioned use a single equation of equilibrium for the calculation of each force. State if the members are in tension or compression. 5 kN 4 kN 4 kN 3 kN 2 kN B D E F 3 m -5 m- -5 m- 5 m 5 m-arrow_forward
- An experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (19): Given the value of Qp [m³/s], and assuming Reynolds number similitude between the water main and experimental tube, calculate the flow rate in the model tube (Qm) in [lit/s]. = 30.015 m^3/sarrow_forwardProblem 11: The lamp has a weight of 15 lb and is supported by the six cords connected together as shown. Determine the tension in each cord and the angle 0 for equilibrium. Cord BC is horizontal. E 30° B 60° Aarrow_forwardProblem 10: If the bucket weighs 50 lb, determine the tension developed in each of the wires. B $30° 5 E D 130°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License