DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 16RQ
What are the two stages of solidification, and what occurs during each?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Generate the kinematic diagram of the following mechanisms using the given symbols. Then, draw
their graphs and calculate their degrees of freedom (DoF) using Gruebler's formula.
PUNTO 2.
PUNTO 3.
!!!
Create a schematic representation of the following mechanisms using the given symbols and draw
their graphs. Then, calculate their degrees of freedom (DoF) using Gruebler's formula.
PUNTO 6.
PUNTO 7.
how the kinematic diagram of the following mechanisms would be represented using the given
symbols?
PUNTO 0.
PUNTO 1.
°
Chapter 13 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 13 - What are the six activities that are conducted on...Ch. 13 - What is materials processing?Ch. 13 - What are the five basic families of...Ch. 13 - Describe the capabilities of the casting process...Ch. 13 - What are some of the various mold materials and...Ch. 13 - How might the desired production quantity...Ch. 13 - Why is it important to provide a means of venting...Ch. 13 - What types of problem or defect can occur if the...Ch. 13 - Why might product removal be less of a problem...Ch. 13 - What is a casting pattern? Flask? Core? Mold...
Ch. 13 - In a horizontally parted two-part mold, what is...Ch. 13 - What are some of the components that combine to...Ch. 13 - What is a parting line or parting surface?Ch. 13 - What is draft, and why is it used?Ch. 13 - Why is it important to control the solidification...Ch. 13 - What are the two stages of solidification, and...Ch. 13 - Why is it that most solidification does not begin...Ch. 13 - Why might it be desirable to promote nucleation in...Ch. 13 - Nucleation generally begins at preferred sites...Ch. 13 - Why might directional solidification be desirable...Ch. 13 - Describe some of the key features observed in the...Ch. 13 - What is superheat?Ch. 13 - Prob. 23RQCh. 13 - What is a liquidus temperature? A solidus...Ch. 13 - What is the freezing range for a metal or alloy?Ch. 13 - Discuss the roles of casting volume and surface...Ch. 13 - What characteristics of a specific casting process...Ch. 13 - What is the correlation between cooling rate and...Ch. 13 - What is the chill zone of a casting, and why does...Ch. 13 - Which of the three regions of a cast structure is...Ch. 13 - What is dross or slag, and how can it be prevented...Ch. 13 - What are some of the possible approaches that can...Ch. 13 - What is a misrun or cold shut, and what causes...Ch. 13 - What is fluidity, and how can it be measured?Ch. 13 - What is the most important factor controlling the...Ch. 13 - What defect can form in sand castings if the...Ch. 13 - Why is it important to design the geometry of the...Ch. 13 - Why might it be preferable to attach gates to the...Ch. 13 - Prob. 39RQCh. 13 - What are some desirable features in the sprue...Ch. 13 - What is a choke, and how does its placement affect...Ch. 13 - What features can be incorporated into the gating...Ch. 13 - What are some of the materials and designs of...Ch. 13 - What factors might influence the positioning of...Ch. 13 - What features of the metal being cast tend to...Ch. 13 - What are the three stages of contraction or...Ch. 13 - Why is it more difficult to prevent shrinkage...Ch. 13 - What steps can be taken to compensate for the...Ch. 13 - During what stage of shrinkage might hot tears...Ch. 13 - What is the role of a riser?Ch. 13 - Why is it desirable to design a casting to have...Ch. 13 - What is yield, and how does it relate to the...Ch. 13 - Based on Chvorinovs rule, what would be an ideal...Ch. 13 - Define the following riser-related terms: top...Ch. 13 - What assumptions were made when using Chvorinovs...Ch. 13 - Discuss aspects relating to the connection between...Ch. 13 - What is the purpose of a chill? Of an insulating...Ch. 13 - What are some materials that are commonly used to...Ch. 13 - What types of modifications or allowances are...Ch. 13 - Prob. 60RQCh. 13 - What is the purpose of a draft or taper on pattern...Ch. 13 - Why is it desirable to make the pattern allowances...Ch. 13 - What additional adjustment or correction must be...Ch. 13 - What are some of the features of the casting...Ch. 13 - Prob. 65RQCh. 13 - What are some design recommendations for inside...Ch. 13 - What are some appearance considerations in parting...Ch. 13 - Prob. 68RQCh. 13 - Prob. 69RQCh. 13 - Using Chvorinovs rule as presented in the text...Ch. 13 - Reposition the riser in Problem 1 so that it sits...Ch. 13 - A rectangular casting having the dimensions 3 in....Ch. 13 - A cylinder with a diameter of 2.5 in. and a height...Ch. 13 - Figure 13.Ashows the wall profile of a cast iron...Ch. 13 - Investigate various experimental techniques to...Ch. 13 - Porosity within a casting can be either...Ch. 13 - The chapter text describes various materials that...Ch. 13 - What is the most likely source of the gas bubbles?...Ch. 13 - What factors may have caused the penetration...Ch. 13 - Prob. 3CSCh. 13 - Prob. 4CSCh. 13 - Prob. 5CS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Create a schematic representation of the following mechanisms using the given symbols and draw their graphs. Then, calculate their degrees of freedom (DOF) using Gruebler's formula. PUNTO 4. PUNTO 5. (0) Groundarrow_forwardDraw the graph of ALL the mechanisms and calculate their DoF using Gruebler's formula. PUNTO 0. PUNTO 1.arrow_forwardAn adjustable support. Construction designed to carry vertical load and is adjusted by moving the blue attachment vertically. The link is articulated at both ends (free to rotate) and can therefore only transmit power axially. Analytically calculate the force to which the link is subjected? Calculate analytically rated voltage in the middle of the link.? F=20kN Alpha 30 deg Rel 225 Mpans:5arrow_forward
- A swivel crane where the load is moved axially along the beam through the wagon to which the hook is attached. Round bar with a diameter of ∅30 mm. The support beam is articulated at both ends (free to rotate) and can therefore only transmit force axially. Calculate reaction force in the x-direction at point A? Calculate analytical reaction force in the y-direction of point A? Calculate nominal stress in the middle of the support beam?Lengt 5 mAlfa 25 degX=1.5mIPE300-steelmass:1000 kgarrow_forwardgot wrong answers help pleasearrow_forwardA crate weighs 530 lb and is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 42 in above the top of the crate directly over the geometric center of the top surface. Use the dimensions given in the table below to determine the tension in each of the three ropes. 2013 Michael Swanbom cc00 BY NC SA ↑ Z C b B У a D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 30 in b 43 in 4.5 in The tension in rope AB is 383 x lb The tension in rope AC is 156 x lb The tension in rope AD is 156 x lbarrow_forward
- A block of mass m hangs from the end of bar AB that is 7.2 meters long and connected to the wall in the xz plane. The bar is supported at A by a ball joint such that it carries only a compressive force along its axis. The bar is supported at end B by cables BD and BC that connect to the xz plane at points C and D respectively with coordinates given in the figure. Cable BD is elastic and can be modeled as a linear spring with a spring constant k = 400 N/m and unstretched length of 6.34 meters. Determine the mass m, the compressive force in beam AB and the tension force in cable BC. Z C D (c, 0, d) (a, 0, b) A B y f m cc 10 BY NC SA 2016 Eric Davishahl x Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.1 m b 3.3 m с 2.7 m d 3.9 m e 2 m f 5.4 m The mass of the block is 68.8 The compressive force in bar AB is 364 × kg. × N. The tension in cable BC is 393 × N.arrow_forwardThe airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. 0 a.) If 11.3°, determine the thrust and lift forces = required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. 20. YAAY' Farag Ө Fthrust CC + BY NC SA 2013 Michael Swanbom Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to 101,855 ☑ lbs. The lift force is equal to 141,282 ☑ lbs. Part (b) The trajectory angle 0 is equal to 7.31 ✓ deg. The lift force is equal to 143,005 ☑ lbs.arrow_forwardsimply supported beam has a concentrated moment M, applied at the left support and a concentrated force F applied at the free end of the overhang on the right. Using superposition, determine the deflection equations in regions AB and BC.arrow_forward
- what is heat exchanger, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of heat exchanger, and how did values end up in that number. based on standards . what is dshellarrow_forwardFIGURE P1.37 1.38 WP As shown in Figure P1.38, an inclined manometer is used to measure the pressure of the gas within the reservoir, (a) Using data on the figure, determine the gas pressure, in lbf/in.² (b) Express the pressure as a gage or a vacuum pressure, as appropriate, in lbf/in.² (c) What advantage does an inclined manometer have over the U-tube manometer shown in Figure 1.7? Patm = 14.7 lbf/in.² L I C i Gas a Oil (p = 54.2 lb/ft³) 140° 8=32.2 ft/s² 15 in.arrow_forwardwhat is an low pressure Heater, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of an air preheater, and how did values end up in that number. based on standardsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Intro to Ceramics and Glasses — Lesson 2, Part 1; Author: Ansys Learning;https://www.youtube.com/watch?v=ArDFnBWH-8w;License: Standard Youtube License