* You hang a steel ball on a string above a beaker that is filled to the top with water (the initial state). The beaker is sitting on a large empty tray. You slowly lower the ball until it reaches the bottom of the beaker. Some water spills over the rim of the beaker to the tray (the final state). (a) Represent the process with an energy bar chart choosing the water, the ball, and Earth as the system, (b) Repeat the analysis for a similar process with the same ball and the same amount of water, but a beaker tall enough so that no water spills over into the tray indicate any assumptions that you made
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
College Physics
Additional Science Textbook Solutions
University Physics Volume 2
Lecture- Tutorials for Introductory Astronomy
Essential University Physics (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Essential University Physics: Volume 2 (3rd Edition)
Tutorials in Introductory Physics
- A suspicious physics student watches a stunt performed at an ice show. In the stunt, a performer shoots an arrow into a bale of hay (Fig. P11.24). Another performer rides on the bale of hay like a cowboy. After the arrow enters the bale, the balearrow system slides roughly 5 m along the ice. Estimate the initial speed of the arrow. Is there a trick to this stunt? FIGURE P11.24arrow_forwardA block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of hemispherical bowl of radius R = 30.0 cm, and the surface of the bowl is rough (Fig. P8.23). The blocks speed at point is 1.50 m/s. Figure P8.23 (a) What is its kinetic energy at point ? (b) How much mechanical energy is transformed into internal energy as the block moves from point to point ? (c) Is it possible to determine the coefficient of friction from these results in any simple manner? (d) Explain your answer to part (c).arrow_forwardIf you run down some stairs and stop, what happens to your kinetic energy and your initial gravitational potential energy?arrow_forward
- A ball of clay falls freely to the hard floor. It does not bounce noticeably, and it very quickly comes to rest. What, then, has happened to the energy the ball had while it was falling? (a) It has been used up in producing the downward motion. (b) It has been transformed back into potential energy. (c) It has been transferred into the ball by heat. (d) It is in the ball and floor (and walls) as energy of invisible molecular motion. (e) Most of it went into sound.arrow_forwardIn the general conservation of energy equation, state which terms predominate in describing each of the following devices and processes. For a process going on continuously, you may consider what happens in a 10-s time interval. State which terms in the equation represent original and final forms of energy, which would be inputs, and which outputs. (a) a slingshot firing a pebble (b) a fire burning (c) a portable radio operating (d) a car braking to a stop (e) the surface of the Sun shining visibly (f) a person jumping up onto a chair Figure CQ8.5arrow_forwardWhen a person sits erect, increasing the vertical position of their brain by 36.0 cm, the heart must continue to pump blood to the brain at the same rate. (a) What is the gain in gravitational potential energy for 100 mL of blood raised 36.0 cm? (b) What is the drop in pressure, neglecting any losses due to friction? (c) Discuss how the gain in gravitational potential energy and the decrease in pressure are related.arrow_forward
- A system consists of three particles, each of mass 5.00 g, located at the corners of an equilateral triangle with sides of 30.0 cm. (a) Calculate the gravitational potential energy of the system. (b) Assume the particles are released simultaneously. Describe the subsequent motion of each. Will any collisions take place? Explain.arrow_forwardDuring a stress test of the cardiovascular system, a patient walks and runs on a treadmill, (a) Is the energy expended by the patient equivalent to the energy of walking and running on the ground? Explain, (b) What effect, if any, does tilting the treadmill upward have? Discuss.arrow_forwardThe awe-inspiring Great Pyramid of Cheops was built more than 4500 years ago. Its square base, originally 230 m on a side, covered 13.1 acres, and it was 146 m high, with a mass of about 7109 kg. (The pyramid's dimensions are slightly different today due to quarrying and some sagging.) Historians estimate that 20,000 workers spent 20 years to construct it, working 12-hour days, 330 days per year. (a) Calculate the gravitational potential energy stored in the pyramid, given its center of mass is at one-fourth its height. (b) Only a fraction of the workers lifted blocks; most were involved in support services such as building ramps (see Figure 7.45), bringing food and water, and hauling blocks to the site. Calculate the efficiency of the workers who did the lifting, assuming there were 1000 of them and they consumed food energy at the rate of 300 kcal/h. What does your answer imply about how much of their work went into block-lifting, versus how much work went into friction and lifting and lowering their own bodies? (c) Calculate the mass of food that had to be supplied each day, assuming that the average worker required 3600 kcal per day and that their diet was 5% protein, 60% carbohydrate, and 35% fat. (These proportions neglect the mass of bulk and non-digestible materials consumed.) Figure 7.45 Ancient pyramids were probably constructed using ramps as simple machines. (credit: Franck Monnier, Wikimedia Commons)arrow_forward
- The blade on a snowplow turns the wet snow through an angle of 120∘ but off to one side at 30∘. If the snow has a density of 500 kg/m3, what power is needed to move the blade at 40 mi/h if it scoops snow that is 15-cm deep and 3-m wide? a. 735 hp b. 746 hp c. 766 hp d. 750 hparrow_forwardThis question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part. Tutorial Exercise A tank is full of water. Find the work W required to pump the water out of the spout. (Use 9.8 m/s2 for g. Use 1000 kg/m3 as the weight density of water.) - 3 m - 2 m 3 m 8 m Step 1 A layer of water Ax m thick which lies x m above the bottom of the tank will be rectangular with length 8 m. Using similar triangles, we can see that it will have width m. - 3 m →| 2 m 3 m 3 8 m Submit Skip (you cannot come back).arrow_forward* ?steady winds at a speed of 8.5 m/s. The wind energy per unit mass is. less than 30 O greater than 30 equal 30 non of the above O Option 2 Oarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College