College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 8MCQ
To determine
The reason due to which a suction pump cannot lift water higher than 10.3 m, from the provided options:
(a) Because it does not have the strength to pull up higher.
(b) Because the atmospheric pressure is equal to the pressure created by a 10.3 m high column of water.
(c) Because suction pumps are outdated lifting device.
(d) Because most suction cups have an opening to the bulb that is too narrow.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
College Physics
Ch. 13 - Review Question 13.1 How would you determine the...Ch. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Review Question 13.5 Why does a fluid exert an...Ch. 13 - Review Question 13.6 Two objects have the same...Ch. 13 - Rank in increasing order the pressure that the...Ch. 13 - 2. Choose a device that reduces the pressure...Ch. 13 - Prob. 3MCQCh. 13 - Prob. 4MCQ
Ch. 13 - Prob. 5MCQCh. 13 - How do we know that a fluid exerts an upward force...Ch. 13 - Prob. 7MCQCh. 13 - Prob. 8MCQCh. 13 - Prob. 9MCQCh. 13 - 10. A wooden cube is floating in a fish tank that...Ch. 13 - 11. Two identical beakers with the same amount of...Ch. 13 - A piece of steel and a bag of feathers are...Ch. 13 - A metal boat floats in a pool. What happens to the...Ch. 13 - When a boat sails from seawater to fresh water,...Ch. 13 - Three blocks are floating in oil as shown in...Ch. 13 - Prob. 16MCQCh. 13 - 17. Describe a method to measure the density of a...Ch. 13 - 18. How can you determine the density of air?
Ch. 13 - 20. Does air exert a net upward force or a net...Ch. 13 - 21. What causes the pressure that air exerts on a...Ch. 13 - 22. Why. when you fill a teapot with water, is the...Ch. 13 - What experimental evidence supports Pascals first...Ch. 13 - Fill a plastic cup to the very top with water. Put...Ch. 13 - 25. Why does a fluid exert a net upward force on...Ch. 13 - Describe how you could predict whether an object...Ch. 13 - 27. Why can you lift objects while in water that...Ch. 13 - 28. When placed in a lake, a solid object either...Ch. 13 - 30. Ice floats in water in a beaker. Will the...Ch. 13 - Prob. 31CQCh. 13 - Why do people sink in fresh water and in most...Ch. 13 - 34. A bucket filled to the top with water has a...Ch. 13 - Marjory thinks that the mass of a fluid above a...Ch. 13 - Prob. 36CQCh. 13 - A bucket filled with water has a piece of ice...Ch. 13 - Prob. 39CQCh. 13 - Determine the average density of Earth. What data...Ch. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - * BIO A diet decreases a persons mass by 5%....Ch. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - 7. Imagine that you have gelatin cut into three...Ch. 13 - An object made of material A has a mass of 90 kg...Ch. 13 - You have a steel ball that has a mass of 6.0 kg...Ch. 13 - * A material is made of molecules of mass 2.0 x...Ch. 13 - 11. You compress all the molecules described in...Ch. 13 - Prob. 13PCh. 13 - * Anita holds her physics textbook and complains...Ch. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Hydraulic car lift You are designing a hydraulic...Ch. 13 - EST Force of air on forehead Estimate the force...Ch. 13 - You have a rubber pad with a handle attached to it...Ch. 13 - * EST Toy bow and arrow A child's toy arrow has a...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Water reservoir and faucet The pressure at the top...Ch. 13 - Prob. 25PCh. 13 - 26. BIOEST Blood pressure Estimate the pressure of...Ch. 13 - Prob. 27PCh. 13 - 28. * Mountain climbing Determine the change in...Ch. 13 - Prob. 29PCh. 13 - 30. * A truck transporting chemicals has crashed,...Ch. 13 - 31. Drinking through a straw You are drinking...Ch. 13 - * More straw drinking While you are drinking...Ch. 13 - Prob. 33PCh. 13 - 34. * BIO EST Eardrum Estimate the net force on...Ch. 13 - 35. BIO Eardrum again You now go snorkeling. What...Ch. 13 - 36. Water and oil are poured into opposite sides...Ch. 13 - 37. * Examine the vertical cross section of the...Ch. 13 - 38. * A test tube of length L and cross-sectional...Ch. 13 - 39. Half of a 20-cm-tall beaker is filled with...Ch. 13 - Blaise Pascal found a seemingly paradoxical...Ch. 13 - 41. Four containers are filled with different...Ch. 13 - Prob. 42PCh. 13 - The reading of a barometer in your room in 780 mm...Ch. 13 - How long would Torricellis barometer have had to...Ch. 13 - Prob. 45PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Draw a force diagram for an object that is...Ch. 13 - 50. Draw a cubic object that is completely...Ch. 13 - Prob. 51PCh. 13 - * Four cubes of the same volume are made of...Ch. 13 - 53. * You place four identical cubes made of oak ...Ch. 13 - kg/m3) reaches the 10-cm mark. You place an oak...Ch. 13 - 55. * A 30-g ball with volume is attached to the...Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - 59. * You have four objects at rest, each of the...Ch. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - 62. * A pin through a hole in the middle supports...Ch. 13 - 63. * A meter stick is supported by a pin through...Ch. 13 - Goose on a lake A 3.6-kg goose floats on a lake...Ch. 13 - 1 floats in seawater of density 2. What fraction...Ch. 13 - 66 * Floating in seawater A person of average...Ch. 13 - kg/m3 when it is fully submerged in water of...Ch. 13 - 68. * Snorkeling A 60-kg snorkeler (including...Ch. 13 - 69. * A helium balloon of volume has a total mass...Ch. 13 - Prob. 70PCh. 13 - Prob. 71PCh. 13 - * Crown composition A crown is made of gold and...Ch. 13 - Prob. 73PCh. 13 - Prob. 74PCh. 13 - 75. * You hang a steel ball on a string above a...Ch. 13 - * One end of a light spring is attached to a...Ch. 13 - Prob. 77PCh. 13 - Prob. 78PCh. 13 - Prob. 79PCh. 13 - EST Iceberg Icebergs are large pieces of...Ch. 13 - Prob. 81PCh. 13 - 82 ** To increase the effect of the buoyant force...Ch. 13 - Prob. 83GPCh. 13 - Prob. 84GPCh. 13 - Prob. 85GPCh. 13 - 86. * EST Bursting a wine barrel Pascal placed a...Ch. 13 - Prob. 87GPCh. 13 - Prob. 88GPCh. 13 - 90. ** You have an empty water bottle. Predict how...Ch. 13 - ** BIO Flexible bladder helps fish sink or rise A...Ch. 13 - * Plane lands on Nimitz aircraft carrier When a...Ch. 13 - Derive an equation for determining the unknown...Ch. 13 - Prob. 94RPPCh. 13 - Prob. 95RPPCh. 13 - 96. As Musimu descends, the buoyant force that the...Ch. 13 - Prob. 97RPPCh. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the pressure drop due to the Bernoulli effect as water goes into a 3.00-cm-diameter nozzle from a 9.00-cm-diameter fire hose while carrying a flow of 40.0 L/S? (b) To what maximum height above the nozzle can this water rise? (The actual height will be significantly smaller due to air resistance.)arrow_forwardThe pressure drop along a length of artery is 100 Pa, the radius is 10 mm, and the flow is laminar. The average speed of the blood is 15 mm/s. (a) What is the net force on the blood in this section of artery? (b) What is the power expended maintaining the flow?arrow_forward(a) Verify that work input equals work output for a hydraulic system assuming no losses to friction. Do this by showing that the distance the output force moves is reduced by the same factor that the output force is increased. Assume the volume of the fluid is constant. (b) What effect would friction within the fluid and between components in the system have on the output force? How would this depend on whether or not the fluid is moving?arrow_forward
- The human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of mm of H2O because body fluids, including the cerebrospinal fluid, typically have nearly the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap. A hollow tube is inserted into the spinal column, and the height lo which the fluid rises is observed, as shown in Figure P9.83. If the fluid ruses to a height of 160. mm, we write its gauge pressure as 160. mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Sometimes it is necessary to determine whether an accident victim has suffered a crushed vertebra that is blocking the flow of cerebrospinal fluid in the spinal column. In other cases, a physician may suspect that a tumor or other growth is blocking the spinal column and inhibiting the flow of cerebrospinal fluid. Such conditions ran be investigated by means of the Queckensted test. In this procedure, the veins in the patients neck are compressed lo make the blood pressure rise in the brain. The increase in pressure in the blood vessels is transmitted to the cerebrospinal fluid. What should be the normal effect on the height of the fluid in the spinal tap? (c) Suppose compressing the veins had no effect on the level of the fluid. What might account for this phenomenon?arrow_forwardReview. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forward(a) What is the density of a woman who floats in freshwater with 4.00% of her volume above the surface? This could be measured by placing her in a tank with marks on the side to measure how much water she displaces when floating and when held under water (briefly). (b) What percent of her volume is above the surface when she floats in seawater?arrow_forward
- You are pumping up a bicycle tire with a hand pump, the piston of which has a 2.00-cm radius. (a) What force in newtons must you exert to create a pressure of 6.90105 Pa (b) What is unreasonable about this (a) result? (c) Which premises are unreasonable or inconsistent?arrow_forwardThe human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of millimeters of H2O because body fluids, including the cerebrospinal fluid, typically have the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap as illustrated in Figure P14.8. A hollow tube is inserted into the spinal column, and the height to which the fluid rises is observed. If the fluid rises to a height of 160 mm, we write its gauge pressure as 160 mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Some conditions that block or inhibit the flow of cerebrospinal fluid can be investigated by means of Queckenstedts test. In this procedure, the veins in the patients neck are compressed to make the blood pressure rise in the brain, which in turn should be transmitted to the cerebrospinal fluid. Explain how the level of fluid in the spinal tap can be used as a diagnostic tool for the condition of the patients spine. Figure P14.8arrow_forward(a) Verify that a 19.0% decrease in laminar flow through a tube is caused by a 5.00% decrease in radius, assuming that all other factors remain constant, as stated in the text. (b) What increase in flow is obtained from a 5.00% increase in radius, again assuming all other factors remain constant?arrow_forward
- A sump pump (used to drain water from the basement of houses built below the water table) is draining a flooded basement at the rate of 0.750 us, with an output pressure of 3.00105 N/m2. (a) The water enters a hose with a 3.00-cm inside diameter and rises 2.50 m above the pump. What is its pressure at this point? (b) The hose goes over the foundation wall, losing 0.500 m in height, and widens to 4.00 cm in diameter. What is the pressure now? You may neglect frictional losses in both parts of the problem.arrow_forwardWhen a person sits erect, increasing the vertical position of their brain by 36.0 cm, the heart must continue to pump blood to the brain at the same rate. (a) What is the gain in gravitational potential energy for 100 mL of blood raised 36.0 cm? (b) What is the drop in pressure, neglecting any losses due to friction? (c) Discuss how the gain in gravitational potential energy and the decrease in pressure are related.arrow_forwardGasoline is piped underground from refineries to major users. The flow rate is 3.00102 m3/s (about 500 gal/ min), the viscosity of gasoline is 1.00103 (N/m2) s, and its density is 680 kg/m3. (a) What minimum diameter must the pipe have if the Reynolds number is to be less than 2000? (b) What pressure difference must be maintained along each kilometer of the pipe to maintain this flow rate?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning