
College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 3P
To determine
The mass of air in a single-level home that has a floor area of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
4B. Four electrons are located on the corners of a square, one on each corner, with the sides of the square being 25 cm long. a) Draw a sketch of the scenario and use your sketch to b) Determine the total force (magnitude and direction) on one of the electrons from the other three?
Portfolio Problem 3. A ball is thrown vertically upwards with a speed vo
from the floor of a room of height h. It hits the ceiling and then returns to the
floor, from which it rebounds, managing just to hit the ceiling a second time.
Assume that the coefficient of restitution between the ball and the floor, e, is
equal to that between the ball and the ceiling. Compute e.
Portfolio Problem 4. Consider two identical springs, each with natural length
and spring constant k, attached to a horizontal frame at distance 2l apart. Their
free ends are attached to the same particle of mass m, which is hanging under
gravity. Let z denote the vertical displacement of the particle from the hori-
zontal frame, so that z < 0 when the particle is below the frame, as shown in
the figure. The particle has zero horizontal velocity, so that the motion is one
dimensional along z.
000000
0
eeeeee
(a) Show that the total force acting on the particle is
X
F-mg k-2kz 1
(1.
l
k.
(b) Find the potential energy U(x, y, z) of the system such that U
x = : 0.
= O when
(c) The particle is pulled down until the springs are each of length 3l, and then
released. Find the velocity of the particle when it crosses z = 0.
Chapter 13 Solutions
College Physics
Ch. 13 - Review Question 13.1 How would you determine the...Ch. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Review Question 13.5 Why does a fluid exert an...Ch. 13 - Review Question 13.6 Two objects have the same...Ch. 13 - Rank in increasing order the pressure that the...Ch. 13 - 2. Choose a device that reduces the pressure...Ch. 13 - Prob. 3MCQCh. 13 - Prob. 4MCQ
Ch. 13 - Prob. 5MCQCh. 13 - How do we know that a fluid exerts an upward force...Ch. 13 - Prob. 7MCQCh. 13 - Prob. 8MCQCh. 13 - Prob. 9MCQCh. 13 - 10. A wooden cube is floating in a fish tank that...Ch. 13 - 11. Two identical beakers with the same amount of...Ch. 13 - A piece of steel and a bag of feathers are...Ch. 13 - A metal boat floats in a pool. What happens to the...Ch. 13 - When a boat sails from seawater to fresh water,...Ch. 13 - Three blocks are floating in oil as shown in...Ch. 13 - Prob. 16MCQCh. 13 - 17. Describe a method to measure the density of a...Ch. 13 - 18. How can you determine the density of air?
Ch. 13 - 20. Does air exert a net upward force or a net...Ch. 13 - 21. What causes the pressure that air exerts on a...Ch. 13 - 22. Why. when you fill a teapot with water, is the...Ch. 13 - What experimental evidence supports Pascals first...Ch. 13 - Fill a plastic cup to the very top with water. Put...Ch. 13 - 25. Why does a fluid exert a net upward force on...Ch. 13 - Describe how you could predict whether an object...Ch. 13 - 27. Why can you lift objects while in water that...Ch. 13 - 28. When placed in a lake, a solid object either...Ch. 13 - 30. Ice floats in water in a beaker. Will the...Ch. 13 - Prob. 31CQCh. 13 - Why do people sink in fresh water and in most...Ch. 13 - 34. A bucket filled to the top with water has a...Ch. 13 - Marjory thinks that the mass of a fluid above a...Ch. 13 - Prob. 36CQCh. 13 - A bucket filled with water has a piece of ice...Ch. 13 - Prob. 39CQCh. 13 - Determine the average density of Earth. What data...Ch. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - * BIO A diet decreases a persons mass by 5%....Ch. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - 7. Imagine that you have gelatin cut into three...Ch. 13 - An object made of material A has a mass of 90 kg...Ch. 13 - You have a steel ball that has a mass of 6.0 kg...Ch. 13 - * A material is made of molecules of mass 2.0 x...Ch. 13 - 11. You compress all the molecules described in...Ch. 13 - Prob. 13PCh. 13 - * Anita holds her physics textbook and complains...Ch. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Hydraulic car lift You are designing a hydraulic...Ch. 13 - EST Force of air on forehead Estimate the force...Ch. 13 - You have a rubber pad with a handle attached to it...Ch. 13 - * EST Toy bow and arrow A child's toy arrow has a...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Water reservoir and faucet The pressure at the top...Ch. 13 - Prob. 25PCh. 13 - 26. BIOEST Blood pressure Estimate the pressure of...Ch. 13 - Prob. 27PCh. 13 - 28. * Mountain climbing Determine the change in...Ch. 13 - Prob. 29PCh. 13 - 30. * A truck transporting chemicals has crashed,...Ch. 13 - 31. Drinking through a straw You are drinking...Ch. 13 - * More straw drinking While you are drinking...Ch. 13 - Prob. 33PCh. 13 - 34. * BIO EST Eardrum Estimate the net force on...Ch. 13 - 35. BIO Eardrum again You now go snorkeling. What...Ch. 13 - 36. Water and oil are poured into opposite sides...Ch. 13 - 37. * Examine the vertical cross section of the...Ch. 13 - 38. * A test tube of length L and cross-sectional...Ch. 13 - 39. Half of a 20-cm-tall beaker is filled with...Ch. 13 - Blaise Pascal found a seemingly paradoxical...Ch. 13 - 41. Four containers are filled with different...Ch. 13 - Prob. 42PCh. 13 - The reading of a barometer in your room in 780 mm...Ch. 13 - How long would Torricellis barometer have had to...Ch. 13 - Prob. 45PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Draw a force diagram for an object that is...Ch. 13 - 50. Draw a cubic object that is completely...Ch. 13 - Prob. 51PCh. 13 - * Four cubes of the same volume are made of...Ch. 13 - 53. * You place four identical cubes made of oak ...Ch. 13 - kg/m3) reaches the 10-cm mark. You place an oak...Ch. 13 - 55. * A 30-g ball with volume is attached to the...Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - 59. * You have four objects at rest, each of the...Ch. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - 62. * A pin through a hole in the middle supports...Ch. 13 - 63. * A meter stick is supported by a pin through...Ch. 13 - Goose on a lake A 3.6-kg goose floats on a lake...Ch. 13 - 1 floats in seawater of density 2. What fraction...Ch. 13 - 66 * Floating in seawater A person of average...Ch. 13 - kg/m3 when it is fully submerged in water of...Ch. 13 - 68. * Snorkeling A 60-kg snorkeler (including...Ch. 13 - 69. * A helium balloon of volume has a total mass...Ch. 13 - Prob. 70PCh. 13 - Prob. 71PCh. 13 - * Crown composition A crown is made of gold and...Ch. 13 - Prob. 73PCh. 13 - Prob. 74PCh. 13 - 75. * You hang a steel ball on a string above a...Ch. 13 - * One end of a light spring is attached to a...Ch. 13 - Prob. 77PCh. 13 - Prob. 78PCh. 13 - Prob. 79PCh. 13 - EST Iceberg Icebergs are large pieces of...Ch. 13 - Prob. 81PCh. 13 - 82 ** To increase the effect of the buoyant force...Ch. 13 - Prob. 83GPCh. 13 - Prob. 84GPCh. 13 - Prob. 85GPCh. 13 - 86. * EST Bursting a wine barrel Pascal placed a...Ch. 13 - Prob. 87GPCh. 13 - Prob. 88GPCh. 13 - 90. ** You have an empty water bottle. Predict how...Ch. 13 - ** BIO Flexible bladder helps fish sink or rise A...Ch. 13 - * Plane lands on Nimitz aircraft carrier When a...Ch. 13 - Derive an equation for determining the unknown...Ch. 13 - Prob. 94RPPCh. 13 - Prob. 95RPPCh. 13 - 96. As Musimu descends, the buoyant force that the...Ch. 13 - Prob. 97RPPCh. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the figure below, a semicircular conductor of radius R = 0.260 m is rotated about the axis AC at a constant rate of 130 rev/min. A uniform magnetic field of magnitude 1.22 T fills the entire region below the axis and is directed out of the page. R Pout (a) Calculate the maximum value of the emf induced between the ends of the conductor. 1.77 v (b) What is the value of the average induced emf for each complete rotation? 0 v (c) How would your answers to parts (a) and (b) change if the magnetic field were allowed to extend a distance R above the axis of rotation? (Select all that apply.) The value in part (a) would increase. The value in part (a) would remain the same. The value in part (a) would decrease. The value in part (b) would increase. The value in part (b) would remain the same. The value in part (b) would decrease. × (d) Sketch the emf versus time when the field is as drawn in the figure. Choose File No file chosen This answer has not been graded yet. (e) Sketch the emf…arrow_forwardPortfolio Problem 2. A particle of mass m slides in a straight line (say along i) on a surface, with initial position x ©0 and initial velocity Vo > 0 at t = 0. The = particle is subject to a constant force F = -mai, with a > 0. While sliding on the surface, the particle is also subject to a friction force v Ff = -m fo = −m fov, with fo > 0, i.e., the friction force has constant magnitude mfo and is always opposed to the motion. We also assume fo 0, and solve it to find v(t) and x(t). How long does it take for the particle to come to a stop? How far does it travel? (b) After coming to a stop, the particle starts sliding backwards with negative velocity. Write the equation of motion in this case, and solve it to find the time at which the particle returns to the original position, x = 0. Show that the final speed at x 0 is smaller than Vo. = Express all your answers in terms of a, fo and Vo.arrow_forward= Portfolio Problem 1. A particle of mass m is dropped (i.e., falls down with zero initial velocity) at time t 0 from height h. If the particle is subject to gravitational acceleration only, i.e., a = −gk, determine its speed as it hits the ground by solving explicitly the expressions for its velocity and position. Next, verify your result using dimensional analysis, assuming that the general relation is of the form v = khag³m, where k is a dimensionless constant.arrow_forward
- Review Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow- green fringe? m = 3 m = 3 m= 0 m = 3 m = 3 Fringes on observation screenarrow_forwardIn the figure below, a semicircular conductor of radius R = 0.260 m is rotated about the axis AC at a constant rate of 130 rev/min. A uniform magnetic field of magnitude 1.22 T fills the entire region below the axis and is directed out of the page. In this illustration, a wire extends straight to the right from point A, then curves up and around in a semicircle of radius R. On the right side of the semicircle, the wire continues straight to the right to point C. The wire lies in the plane of the page, in a region of no magnetic field. Directly below the axis A C is a region of uniform magnetic field pointing out of the page, vector Bout. If viewed from the right, the wire can rotate counterclockwise, so that the semicircular part can rotate into the region of magnetic field. (a) Calculate the maximum value of the emf induced between the ends of the conductor. V(b) What is the value of the average induced emf for each complete rotation? Consider carefully whether the correct answer is…arrow_forwardA coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.20 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 6.00 sin(120t), where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. (Do not include units in your answer.) =arrow_forward
- A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 1.80 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 5.00 sin(120t), where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. (Do not include units in your answer.) =arrow_forwardWhich vowel does this graph represent (”ah,” “ee,” or “oo”)? How can you tell? Also, how would you be able to tell for the other vowels?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forward
- A bat is flying toward a cave wall at 27.0 m/s. What is the frequency of the reflected sound that it hears, assuming it emits sound at 52.0 kHz? The speed of sound is 341.5 m/s. Multiple Choice о 60.9 kHz О 56.5 kHz о 61.3 kHz О 56.1 kHzarrow_forwardCompare the slope of your Data Table 2 graph to the average wavelength (Ave, l) from Data Table 2 by calculating the % Difference. Is the % Difference calculated for the wavelength in Data Table 2 within an acceptable % error? Explain why or why not?arrow_forwardThe slope of a graph of velocity, v, vs frequency, f, is equal to wavelength, l. Compare the slope of your Data Table 1 graph to the average wavelength (Ave, l) from Data Table 1 by calculating the % Difference.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning