EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 8220101425812
Author: DECOSTE
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 72E
Interpretation Introduction
Interpretation: The three different structures of dichlorobenzene needs to be explained with the help of concept of resonance.
Concept Introduction: Resonance is a process that involves the delocalization of electrons to form different Lewis structure of a compound or ion. Not all compounds can show resonance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) True or false: The hydrogen atom is most stable when ithas a full octet of electrons. (b) How many electrons must asulfur atom gain to achieve an octet in its valence shell? (c) Ifan atom has the electron configuration 1s22s22p3, how manyelectrons must it gain to achieve an octet?
A common form of elemental phosphorus is the tetrahedralP4 molecule, where all four phosphorus atoms areequivalent: At room temperature phosphorus is a solid. (a) Are there anylone pairs of electrons in the P4 molecule? (b) How manyP¬P bonds are there in the molecule? (c) Draw a Lewisstructure for a linear P4 molecule that satisfies the octet rule.Does this molecule have resonance structures? (d) On thebasis of formal charges, which is more stable, the linear moleculeor the tetrahedral molecule?
A common form of elemental phosphorus is the tetrahedralP4 molecule, where all four phosphorus atoms areequivalent:At room temperature phosphorus is a solid. (a) Are there anylone pairs of electrons in the P4 molecule? (b) How manyP¬P bonds are there in the molecule? (c) Draw a Lewisstructure for a linear P4 molecule that satisfies the octet rule.Does this molecule have resonance structures? (d) On thebasis of formal charges, which is more stable, the linear moleculeor the tetrahedral molecule?
Chapter 13 Solutions
EBK CHEMICAL PRINCIPLES
Ch. 13 - Explain the electronegativity trends across a row...Ch. 13 - Prob. 2DQCh. 13 - Prob. 3DQCh. 13 - Prob. 4DQCh. 13 - Prob. 5DQCh. 13 - Prob. 6DQCh. 13 - Prob. 7DQCh. 13 - Prob. 8DQCh. 13 - Prob. 9DQCh. 13 - Arrange the following molecules from most to least...
Ch. 13 - Prob. 11DQCh. 13 - Prob. 12DQCh. 13 - Prob. 13ECh. 13 - Prob. 14ECh. 13 - An alternative definition of electronegativity...Ch. 13 - Prob. 16ECh. 13 - Without using Fig. 13.3, predict the order of...Ch. 13 - Without using Fig. 13.3, predict which bond in...Ch. 13 - Prob. 19ECh. 13 - Prob. 20ECh. 13 - Indicate the bond polarity (show the partial...Ch. 13 - Prob. 22ECh. 13 - Prob. 23ECh. 13 - Prob. 24ECh. 13 - Prob. 25ECh. 13 - Prob. 26ECh. 13 - Prob. 27ECh. 13 - Prob. 28ECh. 13 - Prob. 29ECh. 13 - Prob. 30ECh. 13 - Prob. 31ECh. 13 - Give an example of an ionic compound where both...Ch. 13 - What noble gas has the same electron configuration...Ch. 13 - Which of the following ions have noble gas...Ch. 13 - Give three ions that are isoelectronic with...Ch. 13 - Prob. 36ECh. 13 - Predict the empirical formulas of the ionic...Ch. 13 - Which compound in each of the following pairs of...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Consider the following:...Ch. 13 - In general, the higher the charge on the ions in...Ch. 13 - Consider the following energy changes: a....Ch. 13 - Prob. 44ECh. 13 - Prob. 45ECh. 13 - The lattice energies of FeCl3,FeCl2,andFe2O3 are...Ch. 13 - Prob. 47ECh. 13 - Prob. 48ECh. 13 - Prob. 49ECh. 13 - Prob. 50ECh. 13 - Prob. 51ECh. 13 - Prob. 52ECh. 13 - Prob. 53ECh. 13 - Prob. 54ECh. 13 - Prob. 55ECh. 13 - Prob. 56ECh. 13 - Prob. 57ECh. 13 - Prob. 58ECh. 13 - Prob. 59ECh. 13 - Prob. 60ECh. 13 - Prob. 61ECh. 13 - Prob. 62ECh. 13 - Prob. 63ECh. 13 - Prob. 64ECh. 13 - Prob. 65ECh. 13 - Prob. 66ECh. 13 - Prob. 67ECh. 13 - Prob. 68ECh. 13 - Prob. 69ECh. 13 - Prob. 70ECh. 13 - Prob. 71ECh. 13 - Prob. 72ECh. 13 - Prob. 73ECh. 13 - Prob. 74ECh. 13 - Prob. 75ECh. 13 - Prob. 76ECh. 13 - Prob. 77ECh. 13 - Prob. 78ECh. 13 - Prob. 79ECh. 13 - Prob. 80ECh. 13 - Prob. 81ECh. 13 - Prob. 82ECh. 13 - Prob. 83ECh. 13 - Prob. 84ECh. 13 - Prob. 85ECh. 13 - Prob. 86ECh. 13 - Prob. 87ECh. 13 - Prob. 88ECh. 13 - Prob. 89ECh. 13 - Prob. 90ECh. 13 - Prob. 91ECh. 13 - Prob. 92ECh. 13 - Prob. 93ECh. 13 - Prob. 94ECh. 13 - Prob. 95ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Prob. 97ECh. 13 - Two variations of the octahedral geometry are...Ch. 13 - Prob. 99ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Which of the molecules in Exercise 96 have net...Ch. 13 - Prob. 102ECh. 13 - Give two requirements that should be satisfied for...Ch. 13 - What do each of the following sets of...Ch. 13 - Prob. 105ECh. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Prob. 108ECh. 13 - Prob. 109ECh. 13 - Which of the following molecules have net dipole...Ch. 13 - Prob. 111AECh. 13 - Prob. 112AECh. 13 - Prob. 113AECh. 13 - Prob. 114AECh. 13 - Prob. 115AECh. 13 - There are two possible structures of XeF2Cl2 ,...Ch. 13 - Prob. 117AECh. 13 - Prob. 118AECh. 13 - Prob. 119AECh. 13 - Prob. 120AECh. 13 - Prob. 121AECh. 13 - Prob. 122AECh. 13 - Prob. 123AECh. 13 - Prob. 124AECh. 13 - Prob. 125AECh. 13 - Prob. 126AECh. 13 - Prob. 127AECh. 13 - Prob. 128AECh. 13 - Prob. 129AECh. 13 - Prob. 130AECh. 13 - Prob. 131AECh. 13 - Prob. 132AECh. 13 - Prob. 133CPCh. 13 - Prob. 134CPCh. 13 - Given the following information: Heat of...Ch. 13 - Prob. 136CPCh. 13 - A promising new material with great potential as...Ch. 13 - Think of forming an ionic compound as three steps...Ch. 13 - Prob. 139CPCh. 13 - Prob. 140CPCh. 13 - Calculate the standard heat of formation of the...Ch. 13 - Prob. 142CPCh. 13 - Prob. 143MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write all resonance structures of chlorobenzene, C6H5Cl, a molecule with the same cyclic structure as benzene. In all structures, keep the CCl bond as a single bond. Which resonance structures are the most important?arrow_forwardThree known isomers exist of N2CO, with the atoms in these sequences: NOCN; ONNC; and ONCN. Write resonance structures for each isomer and use formal charge to predict which isomer is the most stable.arrow_forwardGiven the bonds C N, C H, C Br, and S O, (a) which atom in each is the more electronegative? (b) which of these bonds is the most polar?arrow_forward
- Which of the species with octets in Question 33 are dipoles?arrow_forwardWhich of these molecules is least likely to exist: NF5, PF5, SbF5, or IF5? Explain why.arrow_forwardSeveral Lewis structures can be written for perbromate ion, , the central Br with all single Br—O bonds, or with one, two, or three Br=O double bonds. Draw the Lewis structures of these possible resonance structures, and use formal charges to predict which makes the greatest contribution to the resonance hybrid.arrow_forward
- It is possible to write a simple Lewis structure for the SO42- ion, involving only single bonds, which follows the octet rule. However, Linus Pauling and others have suggested an alternative structure, involving double bonds, in which the sulfur atom is surrounded by six electron pairs. (a) Draw the two Lewis structures. (b) What geometries are predicted for the two structures? (c) What is the hybridization of sulfur in each case? (d) What are the formal charges of the atoms in the two structures?arrow_forwardWhat is the bond energy calculation for C6H6 and 3h2 gives C6H12 in chemistry?arrow_forwardThe structure of borazine, B3N3H6, is a six-membered ringof alternating B and N atoms. There is one H atom bondedto each B and to each N atom. The molecule is planar.(a) Write a Lewis structure for borazine in which the formalcharge on every atom is zero. (b) Write a Lewis structurefor borazine in which the octet rule is satisfied forevery atom. (c) What are the formal charges on the atomsin the Lewis structure from part (b)? Given the electronegativitiesof B and N, do the formal charges seem favorableor unfavorable? (d) Do either of the Lewis structuresin parts (a) and (b) have multiple resonance structures?(e) What are the hybridizations at the B and N atoms inthe Lewis structures from parts (a) and (b)? Would you expectthe molecule to be planar for both Lewis structures?(f) The six B¬N bonds in the borazine molecule are allidentical in length at 1.44 Å. Typical values for the bondlengths of B¬N single and double bonds are 1.51 Å and1.31 A°, respectively. Does the value of the B¬N…arrow_forward
- Some chemists believe that satisfaction of the octet ruleshould be the top criterion for choosing the dominant Lewisstructure of a molecule or ion. Other chemists believe thatachieving the best formal charges should be the top criterion.Consider the dihydrogen phosphate ion, H2PO4-, inwhich the H atoms are bonded to O atoms. (a) What is thepredicted dominant Lewis structure if satisfying the octetrule is the top criterion? (b) What is the predicted dominantLewis structure if achieving the best formal charges is the topcriterion?arrow_forwardDraw the resonance forms that fit the octet rule for the metaphosphate ion, PO 3. (a) How many sigma bonds are there? How many pi bonds? (b) What is the phosphorus-oxygen bond order? (c) Arrange the following species in ord er of decreasing P-O bond strength (strongest first, weakest 6. 3- last). PO 4, PO2 , PO *, PO ;arrow_forward19. :O: || :0-N- O: Which of the following statements, if true, would support the claim that the NO3 ion, represented above, has three resonance structures? (A) The NO3 ion is not a polar species. (B) The oxygen-to-nitrogen-to-oxygen bond angles are 90°. (C) One of the bonds in NO3 is longer than the other two. (D) One of the bonds in NO3¯ is shorter than the other two.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY