Concept explainers
A 12-oz (355-mL) Pepsi contains 38.9 mg caffeine (molar mass = 194.2 g/mol). Assume that the Pepsi, mainly water, has a density of 1.01 g/mL. For such a Pepsi, calculate: (a) its caffeine concentration in ppm; (b) its molarity of caffeine; and (c) the molality of caffeine.
(a)
Interpretation:
The caffeine concentration in
Answer to Problem 56QRT
The caffeine concentration in
Explanation of Solution
Given data as follows: Molar mass is
As known,
Conversion of water from
Conversion of
Therefore, caffeine concentration in
(b)
Interpretation:
The molarity of caffeine has to be calculated.
Concept introduction:
Molarity: Dividing moles of solute by the volume of solution in Liter.
Answer to Problem 56QRT
The caffeine concentration in
Explanation of Solution
Given data as follows: Molar mass is
Conversion of mass into mole as,
Conversion of
Molarity of solution is calculated as,
Therefore, molarity of caffeine was
(c)
Interpretation:
The molality of caffeine has to be calculated.
Concept introduction:
Molality: Dividing the moles of solute by the mass of solvent in kg.
Answer to Problem 56QRT
The molality of caffeine was
Explanation of Solution
Given data as follows: Molar mass is
Conversion of mass into mole as,
Conversion of
Conversion of water from
Molality of solution is calculated as,
Therefore, molality of caffeine was
Want to see more full solutions like this?
Chapter 13 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- (a) If you dissolve 10.0 g (about one heaping teaspoonful) of sugar (sucrose, C12H22O11) in a cup of water (250. g), what are the mole fraction, molality, and weight percent of sugar? (b) Seawater has a sodium ion concentration of 1.08 104 ppm. If the sodium is present in the form of dissolved sodium chloride, what mass of NaCl is in each liter of seawater? Seawater is denser than pure water because of dissolved salts. Its density is 1.05 g/mLarrow_forwardA forensic chemist is given a white solid that is suspected of being pure cocaine (C17H21NO4, molar mass = 303.35 g/mol). She dissolves 1.22 0.01 g of the solid in 15.60 0.01 g benzene. The freezing point is lowered by 1.32 0.04C. a. What is the molar mass of the substance? Assuming that the percent uncertainty in the calculated molar mass is the same as the percent uncertainty in the temperature change, calculate the uncertainty in the molar mass. b. Could the chemist unequivocally state that the substance is cocaine? For example, is the uncertainty small enough to distinguish cocaine from codeine (C18H21NO3, molar mass = 299.36 g/mol)? c. Assuming that the absolute uncertainties in the measurements of temperature and mass remain unchanged, how could the chemist improve the precision of her results?arrow_forwardWhat would be the freezing point of a solution formed by adding 1.0 mole of glucose (a molecular compound) to the following amounts of water? a. 250 g (0.25 kg) b. 500 g (0.500 kg) c. 1000 g (1.000 kg) d. 2000 g (2.000 kg)arrow_forward
- Bradykinin is a small peptide (9 amino acids; 1060 g/mol) that lowers blood pressure by causing blood vessels to dilate. What is the osmotic pressure of a solution of this protein at 20 C if 0.033 g of the peptide is dissolved in water to give 50.0 mL of solution?arrow_forward6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forwardPredict the relative solubility of each compound in the two solvents, based on the intermolecular attractions. (a) Is potassium iodide more soluble in water or in methylene chloride (CH2Cl2)? (b) Is toluene (C6H5CH3) more soluble in benzene (C6H6) or in water? (c) Is ethylene glycol (C2H4(OH)2) more soluble in hexane (C6H14) or in ethanol (C2H5OH)?arrow_forward
- A patient has a “cholesterol count” of 214. Like manyblood-chemistry measurements,this result is measured inunits of milligrams per deciliter (mgdL1). Determine the molar concentration of cholesterol inthis patient’s blood, taking the molar mass of cholesterolto be 386.64gmol1. Estimate the molality of cholesterol in the patient’sblood. If 214 is a typical cholesterol reading among men inthe United States, determine the volume of such bloodrequired to furnish 8.10 g of cholesterol.arrow_forwardThe dispersed phase of a certain colloidal dispersion consists of spheres of diameter 1.0 102 nm. (a) What are the volume (V=43r2) and surface area (A = r2) of each sphere? (b) How many spheres are required to give a total volume of 1.0 cm3? What is the total surface area of these spheres in square meters?arrow_forwardA gaseous solute dissolves in water. The solution process has H=15 kJ. Its solubility at 22C and 6.00 atm is 0.0300 M. Would you expect the solubility to be greater or less at (a) 22C and 1 atm? (a) 18C and 6 atm? (a) 15C and 10 atm? (a) 35C and 3 atm?arrow_forward
- The organic salt [(C4H9)4N][ClO4] consists of the ions (C4H9)4N+ and ClO4. The salt dissolves in chloroform. What mass (in grams) of the salt must have been dissolved if the boiling point of a solution of the salt in 25.0 g chloroform is 63.20 C? The normal boiling point of chloroform is 61.70 C and Kb = 3.63 C kg mol1. Assume that the salt dissociates completely into its ions in solution.arrow_forwardConsider two solutions, A and B, separated by an osmotic semipermeable membrane that allows only water to pass through, as shown in the diagram in Problem 8-113. Based on each of the following identities for solutions A and B, indicate whether the liquid level in compartment A, with time, will increase, decrease, or not change. a. A = 1.0 M glucose solution and B = 2.0 M glucose solution b. A = 5.0%(m/v) NaCl solution and B = 4.0%(m/v) NaCl solution c. A = 2.0 M Na2SO4 solution and B = 3.0 M KNO3 solution d. A = 2.0 M glucose solution and B = 1.0 M NaCl solutionarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning