Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 52EAP
The 75,000 kg space shuttle used to fly in a 250-km-high circular orbit. It needed to reach a 610-km-high circular orbit to service the Hubble Space Telescope. How much energy was required to boost it to the new orbit?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How much energy is required to lift a 10 kg rock from the surface of the Earth and place it in a circular orbit just 10 km above sea level? Assume Earth's radius is about 6371 km.
A 1 kg satellite is to be placed at 3.55e7 meters above the earth's surface. What is the difference in potential energy between Earth's surface and the satellite height for a satellite with 1 kg mass? What is the total work needed to place the satellite in orbit at this location above earth?
The International Space Station (ISS) has a mass of about 441,000 kg and orbits at a height of about 4.0 x 105 meters above the surface of Earth. If the average U.S. household uses about 40 billion joules (4.0 x 1010 J) of energy in a year, how many households could be powered for a year by the gravitational potential energy stored in the ISS? The height of the ISS above Earth's surface is small enough that you can still use mgh as a reasonable approximation to calculate the gravitational potential energy.
Chapter 13 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 13 - Prob. 1CQCh. 13 - The gravitational force of a star on orbiting...Ch. 13 - A 1000 kg satellite and a 2000 kg satellite follow...Ch. 13 - How far away from the earth must an orbiting...Ch. 13 - A space station astronaut is working outside the...Ch. 13 - The free-fall acceleration at the surface of...Ch. 13 - Why is the gravitational potential energy of two...Ch. 13 - The escape speed from Planet X is 10,000 m/s....Ch. 13 - The mass of Jupiter is 300 times the mass of the...Ch. 13 - Satellites in near-earth orbit experience a very...
Ch. 13 - What is the ratio of the surfs gravitational force...Ch. 13 - What is the ratio of the sun’s gravitational force...Ch. 13 - The centers of a 10 kg lead ball and a 100 g lead...Ch. 13 - What is the force of attraction between a 50 kg...Ch. 13 - The International Space Station orbits 300 km...Ch. 13 - Two 65 kg astronauts leave earth in a spacecraft,...Ch. 13 - A 20 kg sphere is at the origin and a 10kg sphere...Ch. 13 - a. What is the free-fall acceleration at the...Ch. 13 - What is the free-fall acceleration at the surface...Ch. 13 - A sensitive gravimeter at a mountain observatory...Ch. 13 - Saturn’s moon Titan has a mass of 1.351023 kg and...Ch. 13 - A newly discovered planet has a radius twice as...Ch. 13 - Suppose we could shrink the earth without changing...Ch. 13 - Planet Z is 10.000 km in diameter. The free-fall...Ch. 13 - An astronaut on earth can throw a ball straight up...Ch. 13 - What is the escape speed from Jupiter?Ch. 13 - A rocket is launched straight up from the earth’s...Ch. 13 - A space station orbits the sun at the same...Ch. 13 - Prob. 19EAPCh. 13 - Nothing can escape the event horizon of a black...Ch. 13 - You have been visiting a distant planet. Your...Ch. 13 - Two meteoroids are heading for earth. Their speeds...Ch. 13 - A binary star system has to stars, each with the...Ch. 13 - The asteroid belt circles the sun between the...Ch. 13 - You are the science officer on a visit to a...Ch. 13 - Three satellites orbit a planet of radius R, as...Ch. 13 - A satellite orbits the sun with a period of 1.0...Ch. 13 - A new planet is discovered orbiting the star Vega...Ch. 13 - Prob. 29EAPCh. 13 - An earth satellite moves in a circular orbit at a...Ch. 13 - What are the speed and altitude of a...Ch. 13 - a. At what height above the earth is the free-fall...Ch. 13 - Prob. 33EAPCh. 13 - Pluto moves in a fairly elliptical orbit around...Ch. 13 - FIGURE P13.35 shows three masses. What are the...Ch. 13 - What are the magnitude and direction of the net...Ch. 13 - Prob. 37EAPCh. 13 - What is the total gravitational potential energy...Ch. 13 - Two spherical objects have a combined mass of 150...Ch. 13 - Two 100 kg lead spheres are suspended from...Ch. 13 - Prob. 41EAPCh. 13 - An object of mass m is dropped from height h above...Ch. 13 - A projectile is shot straight up from the earth’s...Ch. 13 - Prob. 44EAPCh. 13 - 45. An astronaut circling the earth at an altitude...Ch. 13 - Suppose that on earth you can jump straight up a...Ch. 13 - Prob. 47EAPCh. 13 - Two spherical asteroids have the same radius R....Ch. 13 - A starship is circling a distant planet of radius...Ch. 13 - The two stars in a binary star system have masses...Ch. 13 - A 4000 kg lunar lander is in orbit 50 km above the...Ch. 13 - The 75,000 kg space shuttle used to fly in a...Ch. 13 - How much energy would be required to move the...Ch. 13 - NASA would like to place a satellite in orbit...Ch. 13 - In 2014, the European Space Agency placed a...Ch. 13 - A satellite orbiting the earth is directly over a...Ch. 13 - FIGURE P13.57 shows two planets of mass m orbiting...Ch. 13 - Figure 13.17 showed a graph of log T versus log r...Ch. 13 - Large stars can explode as they finish burning...Ch. 13 - The solar system is 25,000 light years from the...Ch. 13 - Three stars, each with the mass of our sun, form...Ch. 13 - Comets move around the sun in very elliptical...Ch. 13 - A 55,000 kg space capsule is in a...Ch. 13 - Prob. 64EAPCh. 13 - Prob. 65EAPCh. 13 - Prob. 66EAPCh. 13 - Two Jupiter size planets are released from rest...Ch. 13 - A satellite in a circular orbit of radius r has...Ch. 13 - While visiting Planet Physics. you toss a rock...Ch. 13 - A moon lander is orbiting the moon at an altitude...Ch. 13 - Let’s look in more detail at how a satellite is...Ch. 13 - FIGURE CP13.72 shows a particle of mass m at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- It was stated that a satellite with negative total energy is in a bound orbit, whereas one with zero or positive total energy is in an unbounded orbit. Why zero or positive total energy is in an unbounded orbit. Why is this true? What choice for gravitational potential energy was made such that this is true?arrow_forwardSince 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility that there is life on one or more of these planets. To support life similar to that on the Earth, the planet must have liquid water. For an Earth-like planet orbiting a star like the Sun, this requirement means that the planet must be within a habitable zone of 0.9 AU to 1.4 AU from the star. The semimajor axis of an extrasolar planet is inferred from its period. What range in periods corresponds to the habitable zone for an Earth-like Planet orbiting a Sun-like star?arrow_forwardThe International Space Station, which has a mass of 4.65×105 kg, orbits 255 miles above the Earth's surface, and completes one orbit every 92.4 minutes. What is the kinetic energy of the International Space Station in units of GJ (109 Joules)? (Note: don't forget to take into account the radius of the Earth: r_{Earth} = 3959 miles)arrow_forward
- An earth-like planet with a mass of 6.00×1024 kg has a space station of mass 4.60×104 kg orbiting it at a distance of 5.00×105 km. What is the gravitational potential energy between the space station and the planet? (We can simplify the Gravitational Constant G to 6.7x10-11 Nm2/kg) (calculate in J)arrow_forwardA spacecraft with a mass of 5000kg is in circular orbit 2000km above the surface of mars. How much work must the spacecraft engines perform to move the spacecraft to a circular orbit that is 4000km above the surface? (hint Total Energy = Ep+ Ek)arrow_forwardA satellite at a particular point along an elliptical orbit has a gravitational potential energy of 4700 MJMJ with respect to Earth's surface and a kinetic energy of 4400 MJ. Later in its orbit the satellite's potential energy is 5900 MJ. Use conservation of energy to find its kinetic energy at that point.arrow_forward
- A space probe is in orbit around Mars at an altitude of 1200 km. To move to a higher orbit, small rocket engines are used to provide the energy required.(a) Compare the kinetic energy of the space probe in the lower and higher orbit.(b) Explain why energy is required to move the space probe from a lower to a higher orbit. In your answer refer to the total energy of the satellite.arrow_forwardA 2660-kg spacecraft is in a circular orbit 1540 km above the surface of Mars. How much work must the spacecraft engines perform to move the spacecraft to a circular orbit that is 4500 km above the surface? Express your answer to three significant figures.arrow_forwardThe International Space Station, which has a mass of 4.94×105 kg, orbits 258 miles above the Earth's surface, and completes one orbit every 94.3 minutes. What is the kinetic energy of the International Space Station in units of GJ (109 Joules)? (Note: don't forget to take into account the radius of the Earth!) Enter answer here GJarrow_forward
- A 375-kg satellite is launched into a circular orbit that has a period of 699 min and a radius of 19,300 km around Earth. Determine the gravitational potential energy Uorbit Oof the satellite's orbit. Uorbit = Estimate the energy AE required to place the satellite in orbit around Earth. AE = Jarrow_forwardA 1500 kg satellite is in a stable orbit at an altitude of 4.0 × 10 5 m above Earth's surface. What is the satellite's total energy in this orbit? (Mearth = 5.97x1024 kg) (rearth = 6.4x106 m)arrow_forwardWhat is the change in gravitational potential energy of a 65.5 kg astronaut lifted fromEarth’s surface into a circular orbit of altitude 4.50 x 10^2 km?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY