Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 38EAP
What is the total gravitational potential energy of the three masses in FIGURE P13.36?
FIGURE P13.36
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1500 kg satellite is in orbit around the Moon at a distance of 3 Moon radii above the surface of the Moon. The Moon's mass is 7.35×10^22 kg. and its radius is 1.74×10^6 m. a). Draw a sketch of the scenario. b). Use your sketch to calculate the magnitude of the gravitational force acting on the satellite.
Macmillan Learning
One of your summer lunar space camp activities is to launch a 1190 kg rocket from the surface of the Moon. You are a serious
space camper and you launch a serious rocket: it reaches an altitude of 203 km. What gain AU in gravitational potential energy
does the launch accomplish? The mass and radius of the Moon are 7.36 × 1022 kg and 1740 km, respectively.
AU =
28777600000
Incorrect
The radius of the earth is 3960 miles. If the gravitational acceleration of the earth surface is 31.16 ft/sec2, what is the velocity of escape from the earth in miles/sec?
A. 7.1842 C. 5.4244B. 6.9455 D. 3.9266
Chapter 13 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 13 - Prob. 1CQCh. 13 - The gravitational force of a star on orbiting...Ch. 13 - A 1000 kg satellite and a 2000 kg satellite follow...Ch. 13 - How far away from the earth must an orbiting...Ch. 13 - A space station astronaut is working outside the...Ch. 13 - The free-fall acceleration at the surface of...Ch. 13 - Why is the gravitational potential energy of two...Ch. 13 - The escape speed from Planet X is 10,000 m/s....Ch. 13 - The mass of Jupiter is 300 times the mass of the...Ch. 13 - Satellites in near-earth orbit experience a very...
Ch. 13 - What is the ratio of the surfs gravitational force...Ch. 13 - What is the ratio of the sun’s gravitational force...Ch. 13 - The centers of a 10 kg lead ball and a 100 g lead...Ch. 13 - What is the force of attraction between a 50 kg...Ch. 13 - The International Space Station orbits 300 km...Ch. 13 - Two 65 kg astronauts leave earth in a spacecraft,...Ch. 13 - A 20 kg sphere is at the origin and a 10kg sphere...Ch. 13 - a. What is the free-fall acceleration at the...Ch. 13 - What is the free-fall acceleration at the surface...Ch. 13 - A sensitive gravimeter at a mountain observatory...Ch. 13 - Saturn’s moon Titan has a mass of 1.351023 kg and...Ch. 13 - A newly discovered planet has a radius twice as...Ch. 13 - Suppose we could shrink the earth without changing...Ch. 13 - Planet Z is 10.000 km in diameter. The free-fall...Ch. 13 - An astronaut on earth can throw a ball straight up...Ch. 13 - What is the escape speed from Jupiter?Ch. 13 - A rocket is launched straight up from the earth’s...Ch. 13 - A space station orbits the sun at the same...Ch. 13 - Prob. 19EAPCh. 13 - Nothing can escape the event horizon of a black...Ch. 13 - You have been visiting a distant planet. Your...Ch. 13 - Two meteoroids are heading for earth. Their speeds...Ch. 13 - A binary star system has to stars, each with the...Ch. 13 - The asteroid belt circles the sun between the...Ch. 13 - You are the science officer on a visit to a...Ch. 13 - Three satellites orbit a planet of radius R, as...Ch. 13 - A satellite orbits the sun with a period of 1.0...Ch. 13 - A new planet is discovered orbiting the star Vega...Ch. 13 - Prob. 29EAPCh. 13 - An earth satellite moves in a circular orbit at a...Ch. 13 - What are the speed and altitude of a...Ch. 13 - a. At what height above the earth is the free-fall...Ch. 13 - Prob. 33EAPCh. 13 - Pluto moves in a fairly elliptical orbit around...Ch. 13 - FIGURE P13.35 shows three masses. What are the...Ch. 13 - What are the magnitude and direction of the net...Ch. 13 - Prob. 37EAPCh. 13 - What is the total gravitational potential energy...Ch. 13 - Two spherical objects have a combined mass of 150...Ch. 13 - Two 100 kg lead spheres are suspended from...Ch. 13 - Prob. 41EAPCh. 13 - An object of mass m is dropped from height h above...Ch. 13 - A projectile is shot straight up from the earth’s...Ch. 13 - Prob. 44EAPCh. 13 - 45. An astronaut circling the earth at an altitude...Ch. 13 - Suppose that on earth you can jump straight up a...Ch. 13 - Prob. 47EAPCh. 13 - Two spherical asteroids have the same radius R....Ch. 13 - A starship is circling a distant planet of radius...Ch. 13 - The two stars in a binary star system have masses...Ch. 13 - A 4000 kg lunar lander is in orbit 50 km above the...Ch. 13 - The 75,000 kg space shuttle used to fly in a...Ch. 13 - How much energy would be required to move the...Ch. 13 - NASA would like to place a satellite in orbit...Ch. 13 - In 2014, the European Space Agency placed a...Ch. 13 - A satellite orbiting the earth is directly over a...Ch. 13 - FIGURE P13.57 shows two planets of mass m orbiting...Ch. 13 - Figure 13.17 showed a graph of log T versus log r...Ch. 13 - Large stars can explode as they finish burning...Ch. 13 - The solar system is 25,000 light years from the...Ch. 13 - Three stars, each with the mass of our sun, form...Ch. 13 - Comets move around the sun in very elliptical...Ch. 13 - A 55,000 kg space capsule is in a...Ch. 13 - Prob. 64EAPCh. 13 - Prob. 65EAPCh. 13 - Prob. 66EAPCh. 13 - Two Jupiter size planets are released from rest...Ch. 13 - A satellite in a circular orbit of radius r has...Ch. 13 - While visiting Planet Physics. you toss a rock...Ch. 13 - A moon lander is orbiting the moon at an altitude...Ch. 13 - Let’s look in more detail at how a satellite is...Ch. 13 - FIGURE CP13.72 shows a particle of mass m at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A massive black hole is believed to exist at the center of our galaxy (and most other spiral galaxies). Since the 1990s, astronomers have been tracking the motions of several dozen stars in rapid motion around the center. Their motions give a clue to the size of this black hole. a. One of these stars is believed to be in an approximately circular orbit with a radius of about 1.50 103 AU and a period of approximately 30 yr. Use these numbers to determine the mass of the black hole around which this star is orbiting, b. What is the speed of this star, and how does it compare with the speed of the Earth in its orbit? How does it compare with the speed of light?arrow_forwardA system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forward
- (a) What is the acceleration due to gravity on the surface of the Moon? (b) On the surface of Mars? The mass of Mars is SW 6.4181023kg and its radius is 3.38106m .arrow_forward(a) Compute the vector gravitational field at a point P on the perpendicular bisector of the line joining two objects of equal mass separated by a distance 2a as shown in Figure P11.12. (b) Explain physically why the field should approach zero as r 0. (c) Prove mathematically that the answer to part (a) behaves in this way. (d) Explain physically why the magnitude of the field should approach 2GM/r2 as r . (e) Prove mathematically that the answer to part (a) behaves correctly in this limit. Figure P11.12arrow_forward6arrow_forward
- As planets solidify after their initial formation, they give off gases. If they have a strong enough gravitational field, they may hold onto some gases and form an atmosphere. Generally, the stronger the gravity, the thicker the atmosphere. Planets: W, X, Y, Z ------------ Mass: W: 3.30 × 10^23 X: 5.97 × 10^24 Y: 5.68 × 10^26 Z: 8.68 × 10^27 Which of the following planets should have the thickest atmosphere? a) W b) X c) Y d) Zarrow_forwardYou are a scientist exploring a mysterious planet. You have performed measurements and know the following things: The planet has radius d. It is orbiting his star in a circular orbit of radius b. it takes time T to complete one orbit around the star. the free-fall acceleration on the surface of the planet is a. Derive an expression for the mass Mp of the planet in terms of a,d, G the universal gravitational constant. Assume that the gravitational effect of the star at the planet's surface is negligible.arrow_forwardA satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.02 × 104 m/s. The mass of the planet is M = 5.9 × 1024 kg. The mass of the satellite is m = 5.7 × 103 kg. a)Calculate the value of PE in joules. b)Enter an expression for the total energy E of the satellite in terms of m and v. c) Calculate the value of the total energy E in joules.arrow_forward
- 67. I carve out a small spherical volume V somewhere inside a uniform solid sphere. Show that the gravitational field in this void is uniform by calculating the force on a small test mass in the void (Figure P13.67). • Figure P13.67 marrow_forwardChapter 13, Problem 019 X Incorrect. At what altitude above Earth's surface would the gravitational acceleration be 4.30 m/s2? (Take the Earth's radius as 6370 km.) Number T6780.2 Units the tolerance is +/-2% Click if you would like to Show Work for this question: Open Show Work SHOW HINT LINK TO TEXT LINK TO SAMPLE PROBLEM MATH HELP Question Attempts: Unlimited SAVE FOR o searcharrow_forwarda. During one trial of his experiment, Cavendish measured the force of attraction betweena 158 kg sphere and a 0.730 kg sphere placed 230 mm apart to be 1.74 x 10-7 N.Calculate the universal gravitational constant based on these values. b. Describe two potential sources of error in his measurement.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY