Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 22EAP
Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2.0 km/s.
a. The first meteoroid is heading straight for earth. What is its speed of impact?
b. The second misses the earth by 5000 km. What is its speed at its closest point?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A number of gas giant planets orbiting other stars at distances less than 1 A.U. have been discovered. Because of their proximity to their parent stars, and their compositional similarity to Jupiter, they have been labeled “Hot Jupiters”.
The orbital radius of one of these planets is 0.06 A.U. with average orbital speed 600 km/sec. What is the length of this planet’s year in Earth (solar) days?
Estimate the mass, M, of its parent star in terms of the mass of the sun (M) using Newton’s first form of Kepler’s 3rd Law.
Calculate the star’s luminosity, L, in terms of the luminosity of the sun (L☉), Note: (LL=MM4where L ~ 4 × 1026 W ).
The radius of this planet is 1.5 times the radius of Jupiter. Assuming its equilibrium temperature is the temperature at which the planet radiates as much energy as it receives from its star, estimate the temperature of the planet. The value of the planet’s albedo is 0.8. (NOTE: The intensity of the star’s radiant power at a distance d from the star is…
a. Calculate the escape velocity of our solar system, from the surface of the sun.
b. What velocity would an object leaving Earth need, to escape from our solar system?
(ignore the gravitational effect from Earth and other planets for a & b)
A space shuttle is in a circular orbit 250 km above the surface of the earth. The shuttle’s mass is 75000 kg.
a.What is the gravitational acceleration of earth at this orbit?
b.What is the speed of the space shuttle at this orbit?
c.If it needs to catch the Hubble Space Telescope for repairs, how much energy is required to boost it to the new orbit? Assume Hubble space telescope is at 550km above the surface of earth.
Mass of earth: ??=?.??×??^??kgRadius of earth: ??=?.??×??^?m?=?.??×??^−???∙?^?/??^?
Chapter 13 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 13 - Prob. 1CQCh. 13 - The gravitational force of a star on orbiting...Ch. 13 - A 1000 kg satellite and a 2000 kg satellite follow...Ch. 13 - How far away from the earth must an orbiting...Ch. 13 - A space station astronaut is working outside the...Ch. 13 - The free-fall acceleration at the surface of...Ch. 13 - Why is the gravitational potential energy of two...Ch. 13 - The escape speed from Planet X is 10,000 m/s....Ch. 13 - The mass of Jupiter is 300 times the mass of the...Ch. 13 - Satellites in near-earth orbit experience a very...
Ch. 13 - What is the ratio of the surfs gravitational force...Ch. 13 - What is the ratio of the sun’s gravitational force...Ch. 13 - The centers of a 10 kg lead ball and a 100 g lead...Ch. 13 - What is the force of attraction between a 50 kg...Ch. 13 - The International Space Station orbits 300 km...Ch. 13 - Two 65 kg astronauts leave earth in a spacecraft,...Ch. 13 - A 20 kg sphere is at the origin and a 10kg sphere...Ch. 13 - a. What is the free-fall acceleration at the...Ch. 13 - What is the free-fall acceleration at the surface...Ch. 13 - A sensitive gravimeter at a mountain observatory...Ch. 13 - Saturn’s moon Titan has a mass of 1.351023 kg and...Ch. 13 - A newly discovered planet has a radius twice as...Ch. 13 - Suppose we could shrink the earth without changing...Ch. 13 - Planet Z is 10.000 km in diameter. The free-fall...Ch. 13 - An astronaut on earth can throw a ball straight up...Ch. 13 - What is the escape speed from Jupiter?Ch. 13 - A rocket is launched straight up from the earth’s...Ch. 13 - A space station orbits the sun at the same...Ch. 13 - Prob. 19EAPCh. 13 - Nothing can escape the event horizon of a black...Ch. 13 - You have been visiting a distant planet. Your...Ch. 13 - Two meteoroids are heading for earth. Their speeds...Ch. 13 - A binary star system has to stars, each with the...Ch. 13 - The asteroid belt circles the sun between the...Ch. 13 - You are the science officer on a visit to a...Ch. 13 - Three satellites orbit a planet of radius R, as...Ch. 13 - A satellite orbits the sun with a period of 1.0...Ch. 13 - A new planet is discovered orbiting the star Vega...Ch. 13 - Prob. 29EAPCh. 13 - An earth satellite moves in a circular orbit at a...Ch. 13 - What are the speed and altitude of a...Ch. 13 - a. At what height above the earth is the free-fall...Ch. 13 - Prob. 33EAPCh. 13 - Pluto moves in a fairly elliptical orbit around...Ch. 13 - FIGURE P13.35 shows three masses. What are the...Ch. 13 - What are the magnitude and direction of the net...Ch. 13 - Prob. 37EAPCh. 13 - What is the total gravitational potential energy...Ch. 13 - Two spherical objects have a combined mass of 150...Ch. 13 - Two 100 kg lead spheres are suspended from...Ch. 13 - Prob. 41EAPCh. 13 - An object of mass m is dropped from height h above...Ch. 13 - A projectile is shot straight up from the earth’s...Ch. 13 - Prob. 44EAPCh. 13 - 45. An astronaut circling the earth at an altitude...Ch. 13 - Suppose that on earth you can jump straight up a...Ch. 13 - Prob. 47EAPCh. 13 - Two spherical asteroids have the same radius R....Ch. 13 - A starship is circling a distant planet of radius...Ch. 13 - The two stars in a binary star system have masses...Ch. 13 - A 4000 kg lunar lander is in orbit 50 km above the...Ch. 13 - The 75,000 kg space shuttle used to fly in a...Ch. 13 - How much energy would be required to move the...Ch. 13 - NASA would like to place a satellite in orbit...Ch. 13 - In 2014, the European Space Agency placed a...Ch. 13 - A satellite orbiting the earth is directly over a...Ch. 13 - FIGURE P13.57 shows two planets of mass m orbiting...Ch. 13 - Figure 13.17 showed a graph of log T versus log r...Ch. 13 - Large stars can explode as they finish burning...Ch. 13 - The solar system is 25,000 light years from the...Ch. 13 - Three stars, each with the mass of our sun, form...Ch. 13 - Comets move around the sun in very elliptical...Ch. 13 - A 55,000 kg space capsule is in a...Ch. 13 - Prob. 64EAPCh. 13 - Prob. 65EAPCh. 13 - Prob. 66EAPCh. 13 - Two Jupiter size planets are released from rest...Ch. 13 - A satellite in a circular orbit of radius r has...Ch. 13 - While visiting Planet Physics. you toss a rock...Ch. 13 - A moon lander is orbiting the moon at an altitude...Ch. 13 - Let’s look in more detail at how a satellite is...Ch. 13 - FIGURE CP13.72 shows a particle of mass m at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two planets in circular orbits around a star have speed of v and 2v . (a) What is the ratio of the orbital radii of the planets? (b) What is the ratio of their periods?arrow_forwardA space shuttle is in a circular orbit 250 km above the surface of the earth. The shuttle's mass is 75000 kg. What is the gravitational acceleration of earth at this orbit? What is the speed of the space shuttle at this orbit? а. b. c If it needs to catch the Hubble Space Telescope for repairs, how much energy is required to boost it to the new orbit? Assume Hubble space telescope is at 550 km above the surface of earth. Mass of earth: mp = 5.97 × 1024 kg Radius of earth: RE = 6. 38 × 106 m G = 6.67 x 10-11N · m²/kg?arrow_forward7. a. Planet Alpha has a mass of 2.34 × 1025 kg and a radius of 5.67 × 107 m. What is the gravitational acceleration on the surface of the planet? b. What is the gravitational potential energy of an 891 kg object when it is 1.23 × 108 m from the center of the planet?arrow_forward
- 5. The planet Theta has 3 times the gravitational field strength and 4 times the mass of the Earth. How does the radius of Theta compare with the radius of Earth? a. rTheta = TEarth 2 b. rrheta = Earth C. Theta = -r. Earth 3 d. TTheta = V VZrE Eartharrow_forwardA satellite of mass 200 kg is launched from a site on Earth’s equator into an orbit 200 km above the surface of Earth. a. What is the satellite’s speed before it’s launched (in m/s)? (Hopefully, it’s moving along with the surface of the Earth as the Earth rotates.) b. What is the satellite’s speed in its orbit (in m/s)? (Remember there is only onespeed a satellite can have in order to maintain a stable circular orbit with agiven radius.) c. Assuming a circular orbit, what is the orbital period of this satellite? (In other words, how long (in hours) does it take for the satellite to complete one orbit?) d. What is the minimum energy (work) necessary to place the satellite in orbit,assuming no air friction? (Remember, work is the amount of energy added tothe system, and the total energy of the system is a combination of kinetic andgravitational potential energies.)arrow_forwardThe asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 5.0 earth years. Assume a 365.25-days year and MSun = 1.99 × 1030 kg. 1. What is the asteroid's orbital radius? Express your answer in two significant figures. 2. What is the asteroid's orbital speed? Express answer in two significant figures.arrow_forward
- Astronomers have observed a small, massive object at the center of our Milky Way galaxy. A ring of material orbits this massive object; the ring has a diameter of about 15 light-years and an orbital speed of about 200 km/s. a. Determine the mass of the object at the center of the Milky Way galaxy. Give your answer both in kilograms and in solar masses (one solar mass is the mass of the sun). b. Observations of stars, as well as theories of the structure of stars, suggest that it is impossible for a single star to have a mass of more than about 50 solar masses. Can this massive object be a single, ordinary star? c. Many astronomers believe that the massive object at the center of the Milky Way galaxy is a black hole. If so, what must the Schwarzschild radius of this black hole be? Would a black hole of this size fit inside the earth's orbit around the sun?arrow_forwardIn 2004 astronomers reported the discovery of a large Jupiter-sized planet orbiting very close to the star HD 179949 (hence the term "hot Jupiter"). The orbit was just 1/9 the distance of Mercury from our Sun, and it takes the planet only 3.09 days to make one orbit (assumed to be circular). a. What is the mass of the star? Express your answer in kilograms and as a multiple of our Sun's mass. b. How fast (in km/s) is this planet moving?arrow_forwardAll parts needed for like otherwise dislikearrow_forward
- Two spherical asteroids have the same radius R. Asteroid 1 has mass M and asteroid 2 has mass 2M. The two asteroids are released from rest with distance 10R between their centers. What is the speed of each asteroid just before they collide? Hint: You will need to use two conservation laws.arrow_forwardAll parts needed for like otherwise dislikearrow_forwardThe center of a moon of mass m = 8 × 1023 kg is a distance D = 97 × 105 km from the center of a planet of mass M = 10.9 × 1025 kg. At some distance x from the center of the planet, along a line connecting the centers of planet and moon, the net force on an object will be zero. a. Derive an expression for x. b. Calculate x in kilometers, given the variables in the beginning of the problem.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY