Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 63EAP
A 55,000 kg space capsule is in a 28,000-km-diameter circular orbit around the moon. A brief but intense firing of its engine in the forward direction suddenly decreases its speed by 50%. This causes the space capsule to go into an elliptical orbit. What are the space capsule’s (a) maximum and (b) minimum distances from the center of the moon in its new orbit?
Hint: You will need to use two conservation laws.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An inventor wants to launch small satellites into orbit by launching them straight up from
the surface of the earth, at very high speeds.
a) With what speed should he launch the satellite if it is to have a speed of 500 m/s at a
height of 400 km? Ignore air resistance.
b) By what percentage would your answer be in error if you used a flat earth
approximation?
y2 400 km r, = R, + y2
vy= 500 tm/s
After:
Yi =0 km
n = R
Before:
Re
Earth
We are planning a human exploration mission to Mars. We will first place our spacecraft into a circular around Mars and then send down a lander.
a) If we want the spacecraft to orbit at an altitude of 170 km above the Martian surface, what will the velocity and orbital period of the spacecraft?
b) When we land astronauts on the surface of Mars, what acceleration due to gravity in terms of g’s (i.e. as a fraction of the Earth’s gravitational acceleration) will the astronauts experience? You are permitted to use an online resource (e.g. Google) to find the necessary information about Mars that you might need in solving this problem.
You are a scientist exploring a mysterious planet. You have performed measurements and know the following things:
The planet has radius d. It is orbiting his star in a circular orbit of radius b. it takes time T to complete one orbit around the star. the free-fall acceleration on the surface of the planet is a.
Derive an expression for the mass and of the star in terms of b,T, and G the universal gravitational constant.
Chapter 13 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 13 - Prob. 1CQCh. 13 - The gravitational force of a star on orbiting...Ch. 13 - A 1000 kg satellite and a 2000 kg satellite follow...Ch. 13 - How far away from the earth must an orbiting...Ch. 13 - A space station astronaut is working outside the...Ch. 13 - The free-fall acceleration at the surface of...Ch. 13 - Why is the gravitational potential energy of two...Ch. 13 - The escape speed from Planet X is 10,000 m/s....Ch. 13 - The mass of Jupiter is 300 times the mass of the...Ch. 13 - Satellites in near-earth orbit experience a very...
Ch. 13 - What is the ratio of the surfs gravitational force...Ch. 13 - What is the ratio of the sun’s gravitational force...Ch. 13 - The centers of a 10 kg lead ball and a 100 g lead...Ch. 13 - What is the force of attraction between a 50 kg...Ch. 13 - The International Space Station orbits 300 km...Ch. 13 - Two 65 kg astronauts leave earth in a spacecraft,...Ch. 13 - A 20 kg sphere is at the origin and a 10kg sphere...Ch. 13 - a. What is the free-fall acceleration at the...Ch. 13 - What is the free-fall acceleration at the surface...Ch. 13 - A sensitive gravimeter at a mountain observatory...Ch. 13 - Saturn’s moon Titan has a mass of 1.351023 kg and...Ch. 13 - A newly discovered planet has a radius twice as...Ch. 13 - Suppose we could shrink the earth without changing...Ch. 13 - Planet Z is 10.000 km in diameter. The free-fall...Ch. 13 - An astronaut on earth can throw a ball straight up...Ch. 13 - What is the escape speed from Jupiter?Ch. 13 - A rocket is launched straight up from the earth’s...Ch. 13 - A space station orbits the sun at the same...Ch. 13 - Prob. 19EAPCh. 13 - Nothing can escape the event horizon of a black...Ch. 13 - You have been visiting a distant planet. Your...Ch. 13 - Two meteoroids are heading for earth. Their speeds...Ch. 13 - A binary star system has to stars, each with the...Ch. 13 - The asteroid belt circles the sun between the...Ch. 13 - You are the science officer on a visit to a...Ch. 13 - Three satellites orbit a planet of radius R, as...Ch. 13 - A satellite orbits the sun with a period of 1.0...Ch. 13 - A new planet is discovered orbiting the star Vega...Ch. 13 - Prob. 29EAPCh. 13 - An earth satellite moves in a circular orbit at a...Ch. 13 - What are the speed and altitude of a...Ch. 13 - a. At what height above the earth is the free-fall...Ch. 13 - Prob. 33EAPCh. 13 - Pluto moves in a fairly elliptical orbit around...Ch. 13 - FIGURE P13.35 shows three masses. What are the...Ch. 13 - What are the magnitude and direction of the net...Ch. 13 - Prob. 37EAPCh. 13 - What is the total gravitational potential energy...Ch. 13 - Two spherical objects have a combined mass of 150...Ch. 13 - Two 100 kg lead spheres are suspended from...Ch. 13 - Prob. 41EAPCh. 13 - An object of mass m is dropped from height h above...Ch. 13 - A projectile is shot straight up from the earth’s...Ch. 13 - Prob. 44EAPCh. 13 - 45. An astronaut circling the earth at an altitude...Ch. 13 - Suppose that on earth you can jump straight up a...Ch. 13 - Prob. 47EAPCh. 13 - Two spherical asteroids have the same radius R....Ch. 13 - A starship is circling a distant planet of radius...Ch. 13 - The two stars in a binary star system have masses...Ch. 13 - A 4000 kg lunar lander is in orbit 50 km above the...Ch. 13 - The 75,000 kg space shuttle used to fly in a...Ch. 13 - How much energy would be required to move the...Ch. 13 - NASA would like to place a satellite in orbit...Ch. 13 - In 2014, the European Space Agency placed a...Ch. 13 - A satellite orbiting the earth is directly over a...Ch. 13 - FIGURE P13.57 shows two planets of mass m orbiting...Ch. 13 - Figure 13.17 showed a graph of log T versus log r...Ch. 13 - Large stars can explode as they finish burning...Ch. 13 - The solar system is 25,000 light years from the...Ch. 13 - Three stars, each with the mass of our sun, form...Ch. 13 - Comets move around the sun in very elliptical...Ch. 13 - A 55,000 kg space capsule is in a...Ch. 13 - Prob. 64EAPCh. 13 - Prob. 65EAPCh. 13 - Prob. 66EAPCh. 13 - Two Jupiter size planets are released from rest...Ch. 13 - A satellite in a circular orbit of radius r has...Ch. 13 - While visiting Planet Physics. you toss a rock...Ch. 13 - A moon lander is orbiting the moon at an altitude...Ch. 13 - Let’s look in more detail at how a satellite is...Ch. 13 - FIGURE CP13.72 shows a particle of mass m at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardModel the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardSince March 2006, NASAs Mars Reconnaissance Orbiter (MRO) has been in a circular orbit at an altitude of 316 km around Mars (Fig. P6.81). The acceleration due to gravity on the surface of the planet Mars is 0.376g, and its radius is 3.40 103 km. Assume the acceleration due to gravity at the satellite is the same as on the planets surface. a. What is MROs orbital speed? B. What is the period of the spacecrafts orbit? FIGURE P6.81arrow_forward
- Let gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardPlanetary orbits are often approximated as uniform circular motion. Figure P7.9 is a scaled representation of a planets orbit with a semimajor axis of 1.524 AU. a. Use Figure P7.9 to find the ratio of the Suns maximum gravitational field to its minimum gravitational field on the planets orbit. b. What is the ratio of the planets maximum speed to its minimum speed? c. Comment on the validity of approximating this orbit as uniform circular motion.arrow_forwardTwo planets in circular orbits around a star have speed of v and 2v . (a) What is the ratio of the orbital radii of the planets? (b) What is the ratio of their periods?arrow_forward
- The astronaut orbiting the Earth in Figure P3.27 is preparing to dock with a Westar VI satellite. The satellite is in a circular orbit 600 km above the Earth’s surface, where the free-fall acceleration is 8.21 m/s2. Take the radius of the Earth as 6 400 km. Determine the speed of the satellite and the time interval required to complete one orbit around the Earth, which is the period of the satellite. Figure P3.27arrow_forwardIn this problem, you are going to explore three different ways to determine the gravitational constant G. a) By observing that the centripetal acceleration of the Moon around the Earth is ac = 2.66 × 10-3 m/s2, what is the gravitatonal constant G, in cubic meters per kilogram per square second? Assume the Earth has a mass of ME = 5.96 × 1024 kg, and the mean distance between the centers of the Earth and Moon is rm = 3.81 × 108 m. b) Measuring the centripetal acceleration of an orbiting object is rather difficult, so an alternative approach is to use the period of the orbiting object. Find an expression for the gravitational constant in terms of the distance between the gravitating objects rm, the mass of the larger body (the earth) ME, and the period of the orbiting body T. c) The gravitational constant may also be calculated by analyzing the motion of an object, launched from the surface of the earth at an initial velocity of vi. Find an expression of the gravitational constant…arrow_forwardPlease don't provide handwritten solution .....arrow_forward
- A satellite m = 500 kg orbits the earth at a distance d = 213 km, above the surface of the planet. The radius of the earth is re = 6.38 × 106 m and the gravitational constant G = 6.67 × 10-11 N m2/kg2 and the Earth's mass is me = 5.98 × 1024 kg. What is the speed of the satellite in m/s? v =arrow_forwardA satellite is orbiting around a planet in a circular orbit. The radius of the orbit, measured from the center of the planet is R = 1.4 × 107 m. The mass of the planet is M = 4.4 × 1024 kg. Express the magnitude of the gravitational force F in terms of M, R, the gravitational constant G, and the mass m of the satellite. F = Express the magnitude of the centripetal acceleration ac of the satellite in terms of the speed of the satellite v, and R. ac = Express the speed v in terms of G, M and R. v = Calculate the numerical value of v, in m/s. v =arrow_forwardA number of gas giant planets orbiting other stars at distances less than 1 A.U. have been discovered. Because of their proximity to their parent stars, and their compositional similarity to Jupiter, they have been labeled “Hot Jupiters”. The orbital radius of one of these planets is 0.06 A.U. with average orbital speed 600 km/sec. What is the length of this planet’s year in Earth (solar) days? Estimate the mass, M, of its parent star in terms of the mass of the sun (M) using Newton’s first form of Kepler’s 3rd Law. Calculate the star’s luminosity, L, in terms of the luminosity of the sun (L☉), Note: (LL=MM4where L ~ 4 × 1026 W ). The radius of this planet is 1.5 times the radius of Jupiter. Assuming its equilibrium temperature is the temperature at which the planet radiates as much energy as it receives from its star, estimate the temperature of the planet. The value of the planet’s albedo is 0.8. (NOTE: The intensity of the star’s radiant power at a distance d from the star is…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY